
Experimental	Testbeds	as	a	Foundation	for	Reproducibility	of	
Experiments	
	
Kate	Keahey		
	
Computer	Science	experimental	testbeds	allow	investigators	to	explore	a	broad	
range	of	different	state-of-the-art	hardware	options,	assess	scalability	of	their	
systems,	and	provide	conditions	that	allow	deep	reconfigurability	and	isolation	so	
that	one	user	does	not	impact	the	experiments	of	another.	Although	the	primary	
purpose	of	those	testbeds	is	to	provide	resources	to	users	who	would	not	be	able	to	
satisfy	their	experimental	needs	otherwise,	an	important	side-effect	is	that	multiple	
users	and	user	groups	have	access	to	the	same	resources,	that	are	compatible	with	
the	same	experimental	artifacts,	such	as	appliances/images	or	orchestration	
templates.	This	creates	conditions	which	allow	users	to	share	experiments	and	
replicate	each	other’s	work	more	easily	and	creates	an	opportunity	to	foster	good	
experimental	practices	as	well	as	create	a	sharing	ecosystem.		
	
To	facilitate	the	creation	of	such	ecosystem	we	have	developed	two	mechanisms	
that	we	call	respectively	reproducibility	by	side-effect	and	reproducibility	by	
default.	Reproducibility	by	side-effect	is	intended	to	aid	users	in	much	the	same	the	
Linux	“history”	command	allows	you	to	see	what	commands	you	typed	while	
working	on	a	problem.	Similarly	in	a	testbed,	we	often	need	to	refresh	our	memory	
on	the	exact	configuration,	conditions,	or	steps	taken	in	the	conduct	of	an	
experiment.	Chameleons	Experiment	Pre	́cis	captures	all	the	distributed	events	
generated	in	a	testbed	by	a	user	and	presents	them	with	a	summary	(a	pre	́cis)	of	an	
experiment;	the	user	can	then	filter	or	preview	the	events	to	include	only	the	
relevant	ones	thus	working	with	an	accurate	and	impartial	representation	of	their	
work.	The	pre	́cis	can	be	further	used	to	generate	a	description	of	the	experiment	in	
English	or	potentially	a	set	of	experimental	artifacts	-	images,	orchestration	
templates,	or	commands	-	that	will	reproduce	the	experiment.		
	
Searching	for	the	best	expression	of	an	experiment	led	us	to	experiment	with	
notebooks	which	combine	ideas	in	the	form	of	text,	experimental	process	expressed	
as	code,	and	results	expressed	as	data	processing.	Using	notebooks,	users	can	
develop	their	experiments	step	by	step;	as	each	step	is	then	modifiable	and	the	
notebooks	can	be	shared,	each	represents	a	convenient	vehicle	for	repeating	and	
replicating	an	experiment.	To	facilitate	the	use	of	notebooks	we	integrated	Jupyter	
with	Chameleon	by	providing	a	JupyterHub	server	integrated	with	Chameleon	
authentication	methods	for	our	users,	as	well	as	developed	python	and	bash	
libraries	representing	the	testbed	API.	While	notebook	code	is	generally	limited	to	
executing	in	containers	(such	as	Docker	containers),	with	this	integration,	
Chameleon	users	can	define	arbitrarily	complex	containers	powered	by	the		
testbed	--	and	then	use	them	from	their	Jupyter	notebooks	to	run	complex	
experiments.	The	integration	thus	combines	the	flexibility	of	notebooks	with	the	
power	of	experimental	testbeds.		



	
Our	presentation	will	describe	new	capabilities	targeted	at	improving	experiment	
management,	monitoring,	and	analysis	as	well	as	tying	together	testbed	features	to	
improve	experiment	repeatability	and	replicability.	We	seek	to	engage	a	broader	
community	in	the	discussion	of	general	approach	to	reproducibility,	best	
experimental	practices,	as	well	as	interaction	between	testbeds	leading	to	the	
support	of	a	broader	range	of	experiments	and	developing	common	practices	and	
platforms	for	reproducibility.		
	


