Distributed Network Experiment Emulation

Giuseppe di Lena, Andrea Tomassilli, Damien Saucez, Frédéric Giroire, Thierry Turletti, Chidung Lac, Walid Dabbous

> GEFI 2019, Coimbra, november 7th 2019

Network Emulation

- Emulation is an important step in the evaluation cycle of network applications and protocols
 - provides a fully controlled environment to test real protocols & applications
 - in a reproducible way, without any modification
 - scalable scenarios
- Mininet is the reference emulator in the network community
 - but it has been designed to run on a single machine only
- Distrinet allows distributing Mininet scenarios on any pool of computing resources including:
 - Linux cluster of machines (e.g., Grid5000)
 - the cloud (e.g., Amazon EC2)
 - or any Linux-based testbed (e.g., R2lab)

Network Emulation on Testbeds

- Interest for network emulation capabilities in testbeds
 - run large scale scenarios with realistic and accurate results
 - attract more users to test-beds
- The Mininet API offers the right level of abstraction
- Distrinet is a good way to implement Mininet in testbeds
- Provides uniform interface on federated platforms Fed4Fire for running scenarios
 - including hybrid ones that involve more than one testbed

Mininet

+Widely used

- Mininet works well when the virtual hosts and the virtual switches do not require a lot of resources
 - can return wrong results when the physical host is overloaded
 - resource intensive experiments need to distribute the load
- Mininet is also problematic when you need isolation in the virtual nodes

Related Work

- Maxinet runs multiple instances of Mininet, one per cluster node
 - But is not directly compatible with Mininet scripts
- No notion of performance of worker nodes
 - weak machines become a bottleneck for the emulation
- No notion of physical network properties
 - no influence mapping of partitions to workers
- Maxinet has no automatic deployment
 - needs careful manual configuration
- vNode not completely isolated
 - like Mininet

Related Work

- Containernet an extension of Mininet
 - isolates nodes using docker containers
- Can be combined with Maxinet to distribute network experiments
 - But no performance guarantee, like Maxinet
- DISTEM
 - Used in Grid5000 clusters
 - Uses Multicast Vxlan Tunnels, cannot run on Clouds
 - One should specify manually which physical host to use
 - not compatible with Mininet API

Distrinet

- Available for physical machines clusters (G5k) or cloud (AWS)
 - Using Unicast Vxlan to be compatible with the clouds
- Automatic Deployment of the infrastructure
 - Allocation algorithm for Physical or Cloud infrastructure
 - Taking as input both the physical and virtual network topologies/information
- Compatible with Mininet API
- vNodes Isolated with LXC containers

Cluster vs Cloud

• Cluster:

- physical infrastructure known
- complete control of the resources
- Network embedding problem
 - Number of hosts
- Cloud:
 - partial knowledge and control
 - Vector bin packing problem
 - Cost of the experiment

Architecture

- Ansible: Configure the physical machines or Amazon EC2 instances
- LXD: Run containers in the configured machines
- Mininet Api

Distrinet General Configuration

• Requirements:

- The Client must be able connect to the Master host via SSH
- The Master Host must be able connect to all the Worker Hosts via SSH

• Environment set up:

- Distrinet connects to the Master host to install and configure Ansible
- 2. With the previous configuration, Ansible installs and configures LXD in the Master and the worker hosts
- 3. Distrinet is ready for the emulation

Distrinet

- Available for everyone
- Develop a Provision class for your test-bed

- [1] <u>https://github.com/Giuseppe1992/Distrinet</u>
- [2] https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
- [3] https://www.grid5000.fr/w/Grid5000:Home
- [4] <u>https://www.youtube.com/watch?v=p3-nXUxd-F8&feature=youtu.be</u>
- [5] <u>https://www.youtube.com/watch?v=o2bsK_-VPGY&feature=youtu.be</u>

More information

Distributed Network Emulation

Physical Cluster

Optimization: Cluster

- Input: Virtual Network, Physical Infrastructure
- Output: Feasible mapping that minimizes the

hosts used

Experiments Fat Tree Topo

- Physical: Nancy Cluster[5]
- Vhost and Vswitch: 2 Cores and 8Gb Memory, bw=0.2Mbps

[5] <u>https://www.grid5000.fr/w/Nancy:Hardware</u>[6] <u>https://github.com/atomassi/mapping_distrinet</u>, A.Tomassilli

Optimization: Cloud

- Input: Virtual network, cloud instances details
- Output: Feasible mapping that minimizes the cost of the experiment.

CLOUD INSTANCES DETAILS

NAME	vCpu	Memory	Cost
T3.medium	2	4Gb	0.05 \$
T3.large	2	8Gb	0.10 \$
T3.xlarge	4	16Gb	0.20 \$

NAME	Quantity
T3.medium	1
T3.large	1

VIRTUAL NETWORK MAPPING

Experiments AWS Random

- Vhost and Vswitch: 2 Cores and 8Gb Memory, bw=0.2Mbps
- Vtopo: Random

[5] <u>https://github.com/atomassi/mapping_distrinet</u>, A.Tomassilli

AWS Configuration

Amazon AWS limitations:

- Max 5 public IP per region
- No Multicast IPs Allowed

Problem:

• LXD use Multicast VxLan Tunnels

Solution:

 Implement the networking part of LXD using Unicast Tunnels

Example

- Everything is emuleted with 13 Physical Hosts
- Each hosts has:
 - CPU Intel Core i7-2600 processor
 - 8GB RAM
 - 240 GB SSD