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Project goals and motivation

* Video streaming: dominant form of network traffic

* Expected to account for 82% of all Internet traffic by 2022 [Cisco forecast]

* Performance critical for user engagement.

* 1% increase in rebuffering may lead to 3 minutesreduction in user view time
[Sigcomm11]

* Video performance still a challenge
* Higher bit rate video (4K video => 50Mbps)
* Wide disparity in broadband quality across users (e.g., US FCC Report)
* Growth inlivevideo

* Project overview: Novel approaches to video streaming enabled by
value added services at the network edge



Background: Adaptive Bitrate Streaming
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Background: Adaptive Bitrate Streaming
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Background: Adaptive Bitrate Streaming
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ABR algorithms

Must balance:

* Average video bit rates

* Rebuffering ratios

« Change of rates during session

QOE: Composite metric that combines -
the three constituent metrics Rebuffering

Too aggressive




Challenges and our research

* Key limitation of ABR algorithms today:

* Rely on throughputprediction based on local (end-host based) inference of
network state — often erroneous

* |Interactions across multiple adaptive streaming players

* Our ongoing research:
e Can awareness of hierarchical CDN architecture help ABR algorithm design?

* Sharing information across other video flows going through the edge.
* Collaborationwith Prof. Marco Mellia, Politecnico di Torino

* Developingricher throughput prediction frameworks



Research #1. ABR and hierarchical CDNs

e CDNs => hierarchical cache structure.

* Objects may be served from the CDN edge, or a higher level CDN
cache, or may miss altogether in the CDN.

* Today’s ABR algorithms are agnostic of where in the CDN objects are
served from

e Qur work:

* Measurement study to understand how chunks within the same video session
are served in hierarchical CDN settings

* Explore how video player perceived throughput varies based on where
chunks are served from

* Evaluate the implicationsof CDN hierarchies for ABR algorithms



Measurement Methodology

* How to know in an end-to-end fashion where in the CDN hierarchy a
video chunk is served from?

* Our methodology: Leverage CDN pragmas
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Finding: Chunks in the same video session are served by different points in
the CDN hierarchy for multiple popular video publishers and multiple CDNs
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Summary of more detailed analysis
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Serving location can have a significant impact on application perceived throughput
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Implications for ABR algorithms

* Today’s ABR algorithms are agnostic of CDN hierarchy
* Chunkscan be served from different locations
* Chunkthroughputcan vary significantly based on serving location
e Agnostic => source of errors
* Can explicitawareness of CDN hierarchy help to optimize ABR performance?

 Study in the context of Carnegie Mellon’s ABR algorithm (Sigcomm
2015) that uses a Model Predictive Controller (MPC)

* Evaluate benefits of explicit hints that indicate where next chunk s served
from



Emulation results: does making ABR algorithms CDN-
aware help?
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Over 80% of video sessions see reduction in throughput prediction error
Nearly 90% see an improvement in the QoE metric (which combines bit rate, rebufferingand bit rate change)



Research

P

2. Sharing information across video

flows going through the CDN edge

* Observe traffic across multiple flows, not just given flow

* Predict throughput taking into account such visibility
* Does the global view help? How much? What are the challenges?

* Conducting such research difficult: Need access to data
e Collaboration with Professor Marco Mellia, and his group (Politecnico Di

Torino)

» Polito expertise: Traffic data collection (tstat), traffic characterization
* Data beingcollected on going basis in the Polito campus network



Data collection (led by Polito team)

* Passive traffic monitoring tool
* Collects statistics for each flow

» Separately collect client to
server, server to client

e Statistics include RTT, loss rate,
throughput Monitored Internet

Network

* Not just average, but also at
finer granularities
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Throughput of video flows over 1-sec bins

Bin duration throughputs, 1Mb flow, 10kbin
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Impact of
access
technology

(WiFI vs.
Wired)

WiFi clearly
achieves less
throughput
but
differences
sensitive to
publisher
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RTT from
client to
probe:

Wifi clients
have

significantly
higher RTT

RTT from probe to client (insta) 1Mb flows, 10k bins
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RTT from

probe to
server. Kinks

in the curve
correspond
to different
CDN server
placements

CDF

RTT from probe to server (insta) 1Mb flows, 10k bins
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Next steps

o Understand the extent to which using information across flows can help

prediction
o See what features are needed (e.g., publisher, access technology)

o« What are the likely patterns if move to 4K video?



Other Research: Richer throughput prediction
frameworks

* State-of-the-artin throughput prediction for video
e CS2P: Hidden Markov Model based scheme
* Clusters data based on ISP,CDN etc; then buildsa HMM per cluster
* Does not considerimpact of TTFB, video chunk size.

e Qur research:
 Neural network model based on LSTMs

* Novel architecture to combine static features (e.g., ISP, CDN) with time-
varying features (TTFB, throughput)

e Results:
 Throughputprediction accuracy improved over 23.8% relative to CS2P
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