Multi-Element Mobile Visible Light Communication for Smart Cities

Murat Yuksel

murat.yuksel@ucf.edu

Networking and Wireless Systems Lab (NWSL)

Electrical & Computer Engineering

Computer Science

College of Optics and Photonics (CREOL)

University of Central Florida, Orlando, FL 32816, USA

Visible Light Communication

- Transmission: How to use a visible light source which, in addition to illumination, can transmit information using the same light signal?
- Reception: How to detect the received data-carrying light signal and decode the information?
- Goals:
 - High Communication Range
 - High Data Rate
 - Robust Reception in Mobile Settings
 - Uniform Illumination
 - Low Power Consumption

Benefit of Multi-element VLC

Single data stream

Large divergence – for smooth
lighting

Multiple data streams

Narrow divergence – for higher spatial reuse

Spherical structures – to retain smooth

lighting

UCF

Proposed Multi-element VLC Architecture

VLC for Mobiles

How to design robust receivers?

VLC for Mobiles

- Existing VLC solutions use receivers with large FOV but a small aperture area.
- Small aperture area allows high speed reception.
- But, can easily be blocked by a finger!

 How can we increase the reception aperture area while keeping the reception rate high?

VLC Receiver Design

We re-worked this part while increasing the photo-detection aperture area.

VLC Receiver Design: Photo-detection

IMPORTANT CHARACTERISTICS OF FDS1010

- Each APD
 - Has 1cm² aperture area
 - Costs \$50

- •5-8 APDs
- Can be arranged conformal to the surface of the mobile device

Specifications			
Wavelength Range, λ	350 - 1100 nm		
Peak Responsivity, $max[\mathcal{R}(\lambda)]$	0.725A/W		
Active Area per PD, A	$100 \mathrm{mm}^2$		
Rise/Fall Time, $t_{\rm r}/t_{\rm f}$ ($V_{\rm B}=18V$)	18ns		
Dark Current ($V_B = 18V$)	80μA		
Capacitance, C_J ($V_B = 18V$)	169.2pF		
Maximum Tolerable Reversed Biased, $V_{\mathrm{B,max}}$	25V		
Maximum Output Photocurrent, Io	10mA		
Maximum Optical Input Power, Pi,max	10mW		

VLC System Performance

- Max Range $\approx 7 m$
- Max BW $\approx 20 26 MHz$

	R	BW	FOV	Packet Loss Rate
Our Prototype	7.1 m	20 MHz	360°	10^{-6}
Pure LiFi-X [23]	1.8 m	42 MHz	60°	$\approx 3.4 \times 10^{-5}$
[21]	2.4 m	10 KHz	10°	10^{-2}
[20]	50 m	50 KHz	75°	3.2×10^{-4}
Thorlabs [24]	0.45 m	12 MHz	150°	$\approx 10^{-4}$

IEEE ICC 2019

- [1] E. T. Won, D. Shin, D. Jung, Y. Oh, T. Bae, H.-C. Kwon, C. Cho, J. Son, D. O'Brien, T.-G. Kang, and T. Matsumura, IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs): Visible Light Communication: Tutorial, 2018.
- [2] S. Rajagopal, R. D. Roberts, and S. Lim, "IEEE 802.15.7 visible light communication: modulation schemes and dimming support," IEEE Communications Magazine, vol. 50, no. 3, pp. 72–82, March 2012.

Summary

- Efficient VLC system design and challenges
- A prototype indoor VLC system that is made of off-the-shelf components, and is scalable and suitable in an office environment.
 - 20 Mbps, 7 m and BER < 10⁻⁵ under intense vibration
- A multi-photodetector (PD) array VLC receiver design, conformal to surfaces of IoT shapes (e.g., laptop, TV monitor, or VR headset) with large aperture area
- Experimental channel modeling and characterization of vibration effects
- Design for vibrant VLC link with high delay spread and non-zero memory:
 - How to reduce ISI by implementing optimal (MSD) and sub—optimal (DF-APA) algorithms
 - Formulation of ISI effects on wide FOV receivers in vibrant VLC channels

VLC for Many Mobiles

How to associate VLC beams to mobile users and tune them

-- while having "good" illumination?

Proposed Hemispherical Bulb

- The LEDs are mounted in the bulb in Circular Layers
- Multiple LEDs can be assigned to a particular user but no LED is assigned to more than 1 user
- A variable, ∈_{mu}, defines the association between LED m and User u

$$\epsilon_{mu} = \begin{cases} 1, & \text{if LED } m \text{ is associated with user } u. \\ 0, & \text{otherwise.} \end{cases}$$

VLC Channel Model

$$h_{mu} = \begin{cases} \frac{A_u}{d_{mu}^2} Q_0(\varphi_{mu}) \cos(\varphi_{mu}) \\ 0 \end{cases}$$

 $, 0 \le \varphi_{mu} \le \phi_c$ $, \varphi_{mu} \ge \phi_c$

Channel between the mth LED and the nth User

 $Q_0(\phi_{mu}) \rightarrow \text{Lambertian radiant}$ intensity

 $\Phi_c \rightarrow \text{LED}$ divergence angle

The Problem In Hand

Several things to consider

- Total power consumption of the system:
 - There can be a large number of IoT devices in the network
- Data rates of each user in the system:
 - Ensuring a minimum data rate for each IoT device is critical
- Illumination uniformity:
 - We also should not forget about the lighting quality!

Problem Solution

- Properties of the formulated optimization problem
 - Non-convex
 - Mixed-integer
 - Non-linear
- Our proposed two-stage heuristic solution
 - First stage: A 'Nearest User Assignment' (NUA) approach is implemented to determine the value of ∈_{mu}
 - Second stage: Using the LED-user associations from the value of ϵ_{mu} found in stage 1, we optimize the LEDs' power allocations

Simulation Results

System analysis for different LED divergence angles

IEEE LANMAN 2019

Summary

- An optimization problem that minimizes the total energy consumed by the multi-element bulb while considering the LEDs' power budget and maintaining illumination uniformity
- Each LED could be for transmission of data to a receiver as well as for increasing the illumination uniformity
- The users' QoS and the LED-user association are considered
 - A minimum data rate of 1 Mbps is maintained in all the scenarios
- Cost-effectiveness is improved significantly for a high number of users

Future Work

- VLC Receiver
 - PCB-based implementation
 - Removing FPGAs out of the way: Integration with laptops or smartphones
 - Scaling the aggregate aperture area at the receiver:
 - Detect and merge
 - Advanced learning methods
 - Further understanding of the VLC channels in a casual office/indoor settings:
 Shakes, human movements, reflections
- Multi-element Bulb
 - Larger room size with more users (as in airports or hospitals)
- Deployment and testing at Northumbria

Words for GEFI

- VLC is more needed and maturing as technology, e.g., LiFi
- Testbeds are needed to proliferate the VLC research innovations
 - Integration with cellular and WiFi systems is necessary
 - Transceivers with VLC and radio capability are worthy investments

Thank you!

