

OpenRAN@Brasil Program

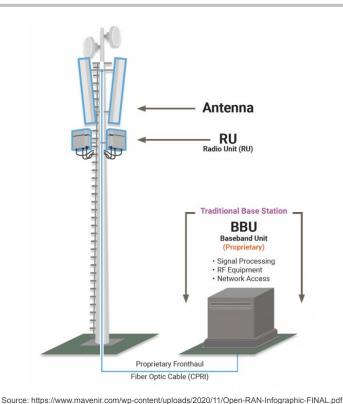
Rezende

Rede Nacional de Ensino e Pesquisa (RNP)

III Workshop de Testbeds (WTestbeds)

- What is Open RAN?
- The OpenRAN@Brasil Program
- Next Steps
- Final Remarks

What is Open RAN?

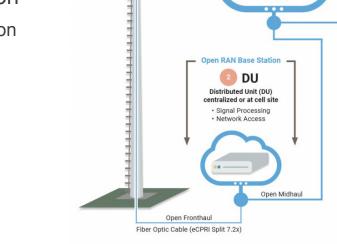

OpenRAN@Brasil Program

What is Open RAN?

- RAN (Radio Access Network)
 - Users' entry point to the network
 - In general, composed of three elements
 - Antenna

2024

- Radio Unit (RU)
- Baseband Unit (BBU)



- Traditional Operator Networks
 - Proprietary hardware and software
 - Closed and proprietary interfaces
 - Single vendor
 - Creates a lock-in between the network operator and the vendor
 - Performance reduction when deploying cells from different vendors
 - Barrier for innovation

Three main elements • Radio Unit (RU)

- Distributed Unit (DU)
- Centralized Unit (CU)
- Programmable and software-defined operation
 - DU and CU may run as virtualized SW functions on off-the-shelf HW
- Open and standardized interfaces
 - Modular and Multivendor
- "Disaggregated RAN"
 - Network agility and flexibility
 - Increased innovation
 - Cost savings

2024

Source: https://www.mavenir.com/wp-content/uploads/2020/11/Open-RAN-Infographic-FINAL.pdf

What is Open RAN?

RU

Radio Unit (RU) integrated into Active Antenna

Centralized Unit (CU)

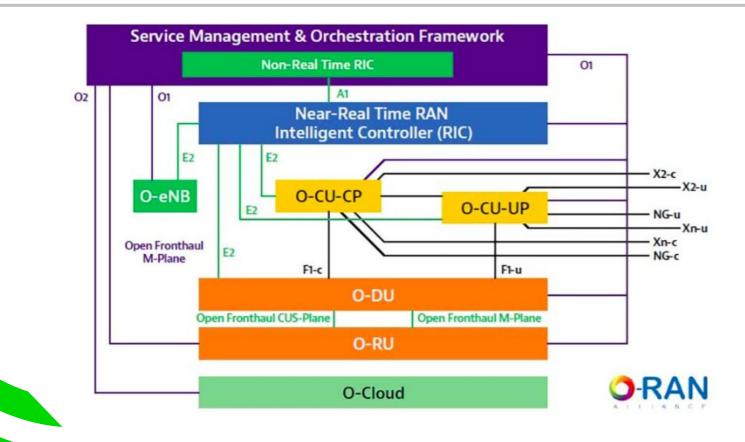
Open RAN Initiatives

O-RAN Alliance

- Founded by AT&T, China Mobile, Deutsche Telekom, NTT DOCOMO and Orange
- Architecture for open, intelligent, virtualized and fully interoperable RAN
- Telecom Infra Project (TIP)
 - A Meta initiative
 - Non profit organization focused on advance global connectivity
- Open Network Foundation (ONF)
 - Proposed the Software-Defined RAN (SD-RAN)
 - 3GPP compliant and consistent with the O-RAN architecture

Open RAN Suites

- Radisys
 - commercial suite, disaggregated and containerized software for RAN and CN
- Open Air Interface (OAI)
 - open software for RAN and CN technologies developed by a community of developers from around the world
- SRSRAN Project
 - open-source 4G and 5G software radio suites developed by Software Radio Systems



O-RAN Architecture

The OpenRAN@Brasil Program

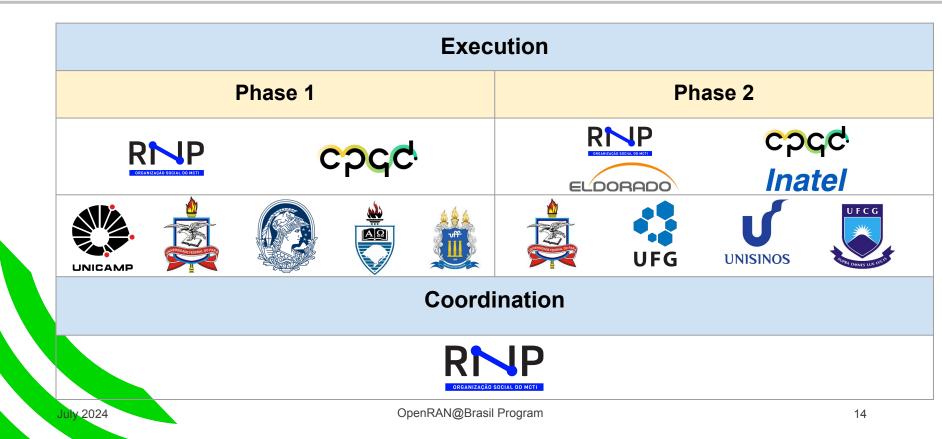
• Aspiration: to accelerate the development of an open network ecosystem from research, development, innovation and workforce training in technologies and applications related to 5G and beyond

- Stimulating interaction between actors from industry, academia and government
- Promoting different application scenarios
- Promoting collaborative development models (mainly open source)
- Promoting the innovation ecosystem through the experimentation and demonstration space
- Promoting workforce training

The OpenRAN@Brasil Program

Cornerstones

- Research, develop, deploy and validate innovative solutions for intelligent management and control of open and disaggregated networks in different technological domains
- Build and make available experimentation infrastructures in different technological domains that adopt openness and disaggregation
- Train professionals and engage academia/industry


OpenRAN@Brasil - Phases

2022-2024	2023-2025	2025-2027	
Phase 1	Phase 2		
R&D on management, control and automation layers Service Management and 	P&D on Hardware	Phase 3	
 Service Management and Orchestration (SMO) RAN Intelligent Controller (RIC) SDN, P4 and DWDM in the transport layer SD-PON in the Fronthaul CLOUD/EDGE computing orchestration 	 Development of own Radio Unit (RU) Motivation: Most expensive part of the architecture Few vendors 	 Testbed expansion At least one site in each region in Brazil Relevant market verticals 	
Testbed building • 2 sites • Campinas (CPQD) • Rio de Janeiro (RNP) • Composed of open and disaggregated domains (packet, optical and wireless) Academia and startup open calls Status: running Duration: 36 months	R&D in Software • RIC xApps/rApps R&D in Cybersecurity Status: running Duration: 30 months	Status : submitted Duration : 36 months	

OpenRAN@Brasil - Partners

The OpenRAN@Brasil Phase 1

Phase 1

• Objective:

- R&D to build an open and programmable infrastructure (testbed)
 - Disaggregated equipments
 - Offered to different communities (academia, industry and service providers)
- Foster RD&I in open RAN
 - Working groups & Startups
- Train specialized workforce in different open RAN technologies

Phase 1 - Testbed

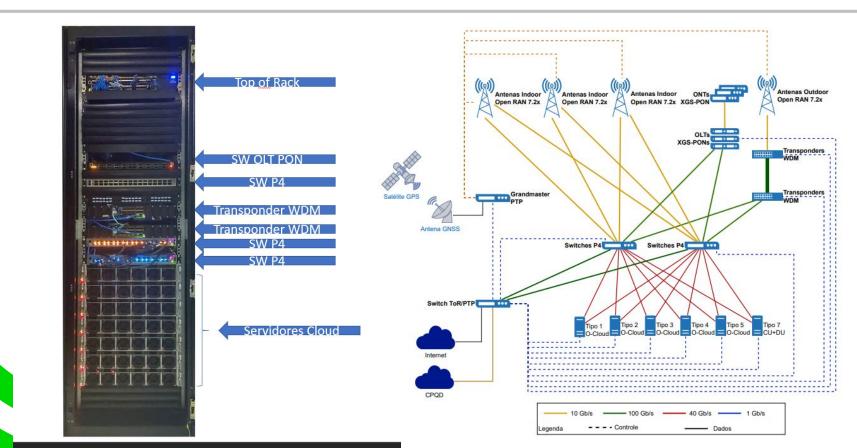
- Testbed characteristics
 - Open hardware
 - Open software
 - Developed by international communities/initiatives
 - Paradigms
 - Softwarization, Virtualization and Disaggregation

- Testbed resources
 - multiple technological domains
 - Edge/central cloud, packet (P4), optical (PON and DWDM networks) and wireless (Open RAN 5G)
 - multiple RICs
 - SD-RAN (ONF) and O-SC (O-RAN Alliance)

Phase 1 - Testbed

- O-RAN Alliance Split 7.2X architecture
 - O-RU disaggregated from O-DU
- Computing
 - 7 servers
- O-RAN antennas
 - 3 indoor and 1 outdoor (in acquisition) 5G O-RAN antennas
- Packet domain
 - Leaf-spine topology
 - P4 switches
- Optical domain
 - PON (XGS-PON and GPON)
 - DWDM

2024



18

Site PoP-RJ

Phase 1 - Testbed

• Sites

- Two sites deployed in Phase 1
 - CPQD Campinas, SP
 - RNP Rio de Janeiro, RJ
- Both located in the southeast
 - Geographical distance: 397 km (~246.7 miles)
 - Road distance: 493.1 km (~306.4 miles)
- Connected by a 10 Gbps link

Open Calls

July 2024

WGs & Startups Topic QoS for open RAN **ORAN-QOS** Plateou Slicing orchestration **OIRAN** High availability, low power orchestration FAIR-5G 5G security AGIR Intent-based management for open RAN IQoS Smart Management for QoS Acta Robotic Robotics Anlix Monitoring Cromai Agriculture **Pix Force** Industry 4.0 Quickium **Computer vision Ring-0 Networks** Security

Uso do testbed

Formulário de Submissão de Proposta para uso do Testbed do Programa OpenRAN@Brasil

Preencha atentamente a todos os campos desse formulário para que sua solicitação de uso do testbed seja avaliada. Todas as solicitações serão processadas e, caso necessário, o Programa OpenRAN@Brasil poderá entrar em contato através dos dados de contato fornecidos solicitando mais informações. **Serão consideradas apenas propostas com fins científicos de pesquisa e educação**. Não serão avaliadas propostas para comercialização de serviços a partir do uso do testbed. Para informações detalhadas sobre o testbed, acesse: <u>https://openranbrasil.org.br/wp-content/uploads/2024/04/Testbed-OpenRAN-Descritivo.pdf</u>

rezende@land.ufrj.br Switch account

3

Not shared

* Indicates required question

Título do Experimento *

Your answer

Acesso ao Testbed

The OpenRAN@Brasil Phase 2

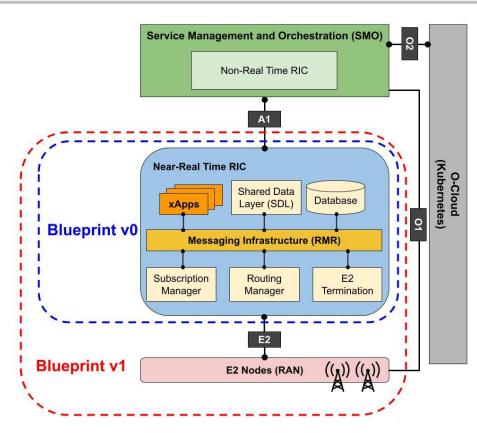
Phase 2

- R&D of a 5G O-RAN Alliance compliant Radio Unit (O-RU)
- R&D of smart SDN applications for the Open RAN domain (xApps/rApps)
- Open RAN cybersecurity risk analysis

Hardware

- 8T8R (40W each)
- N78 Band
- O-RU management software
 - NETCONF protocol/YANG models

xApps and rApps

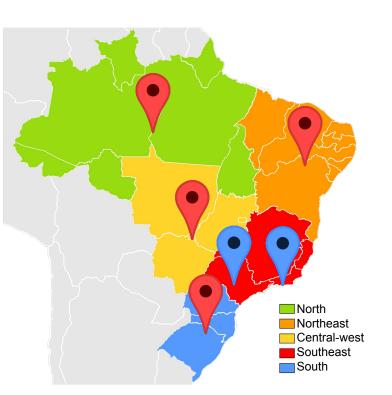

• What are they?

- Automation and optimization tools
- Control and management features
- Differences
 - xApp: near-real time
 - Optimize radio spectrum efficiency
 - rApp: non-real time
 - ML for establishing policies

- Four xApps in development
 - RIC distribution
 - Energy consumption
 - Network slicing
 - Self-organizing RAN
- Two different RICs being explored
 - Open Network Foundation: SD-RAN
 - O-RAN Alliance: SC

xApp/rApp Development Environment

- blueprints w/ O-RAN SC (OSC)
 - pre-built VM images with all application development environment
 - v0: near-RT-RIC release I with "Hello World xApp"
 - v1: v0 + e2sim + xApp that interacts with the radio
 - v2: v1 + ns-3 (to be released in Oct/24)


The OpenRAN@Brasil Phase 3

Phase 3

• Objectives:

- Expand the testbed infrastructure to every region in Brazil
 - North, Northeast, Central-west, South
- R&D on applications
 - Industry
 - Agriculture
 - Health
 - Education
 - Cities
 - Gaming

OpenRAN@Brasil Program

Next steps

- Testbed release
 - October 2023
 - Incremental release
 - v1.0: 5G open RAN network capabilities
 - v2.0: Smart orchestration capabilities
 - v3.0: New capabilities
 - addition of GPUs for ML/AI
 - Improved Wi-Fi capabilities
 - new OpenRAN suites

- Incorporate additional partners
 - New ICTs want to be part of the program
 - Build a community of open RAN research in Brazil
 - Put together different infrastructures
 - commercial and open source Open RAN stacks
 - Test interoperability
 - Knowledge exchange

- Open RAN stimulates competition in the communication industry
 - Open the market for new hardware/software vendors
 - Cost reduction for operators
 - Single vendor dependency reduction
 - Interoperability between different components allows the adoption of more suitable solutions for specific scenarios

- Open RAN can boost advances in innovative applications
 - Flexibility and interoperability facilitate the appearance of new services and business models
 - New apps/services for advanced scenarios (smart cities, industrial automation, digital health, ...)
 - Driving digital transformation in different sectors
 - Health, agriculture, education, among others...

Final Remarks

- The OpenRAN@Brasil Program has the potential of
 - Fostering innovation
 - Strengthening national industry
 - Expanding connectivity
 - Promoting global collaboration

Thanks!

jose.rezende@rnp.br

www.openranbrasil.org

