Redes Abertas Programáveis: Experiências e Lições Aprendidas da Emulação à Implantação

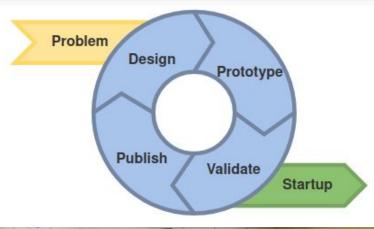
Universidade Federal do Espírito Santo - UFES

Departamento de Informática

magnos.martinello@ufes.br

Foto no SBRC 2024

- Programa de Pós-Graduação em Informática (UFES)
- Linha: Redes de computadores e multimídia



LabNERDS: Núcleo de Estudos em Redes Definidas por SW

- Missão: Inovar em sistemas de rede
- Áreas: SDN, NFV, redes autônomas, ...

Agenda

- Evolução da conectividade
 - Gerações, Desempenho, Programabilidade, Interação
 - O que são redes abertas programáveis?
 - Tendências de Softwarização
- A nossa experiência no Lab NERDS :-)
 - Como prototipar soluções com redes programáveis?
 - IA e redes programáveis podem ser combinadas para impulsionar protocolos/padrões em redes abertas ?
 - Implantação de protocolo de roteamento ciente de caminhos

Evolução das Redes : Épocas e suas tecnologias

Época	Tecnologias, aplicações e protocolos	Latência	Largura de Banda
1	FTP, E-mail, Telnet	100 ms	64 Kbps
2	RPC, Computação Cliente/Servidor	10 ms	10 Mbps
3	HTTP, HPC	1 ms	100 Mbps - 1 Gbps
4	Busca na Web, Serviços em Escala Planetária	100 μs	10 Gbps
5	Aprendizado de Máquina, Computação Centrada em dados	10 μs	200+ Gbps - 1 Tbps

Evolução das Redes : Desempenho

10 x banda 1/10 latência por época

Época	Tecnologias, aplicações e protocolos	Latência	Largura de Banda
1	FTP, E-mail, Telnet	100 ms	64 Kbps
2	RPC, Computação Cliente/Servidor	10 ms	10 Mbps
3	HTTP, HPC	1 ms	100 Mbps - 1 Gbps
4	Busca na Web, Serviços em Escala Planetária	100 µs	10 Gbps
5	Aprendizado de Máquina, Computação Centrada em dados	10 µs	200+ Gbps - 1 Tbps

Evolução das Redes : Formas de Interação

Pessoas com computadores

Computadores com computadores

Serviços com serviços

Pessoas com pessoas

Pessoas com "Insights" (visões, entendimentos, percepções, análises, reflexões)

Época	Tecnologias, aplicações e protocolos	Latência	Largura de Banda
1	FTP, E-mail, Telnet	100 ms	64 Kbps
2	RPC, Computação Cliente/Servidor	10 ms	10 Mbps
3	HTTP, HPC	1 ms	100 Mbps - 1 Gbps
4	Busca na Web, Serviços em Escala Planetária	100 µs	10 Gbps
5	Aprendizado de Máquina, Computação Centrada em dados	10 µs	200+ Gbps - 1 Tbps

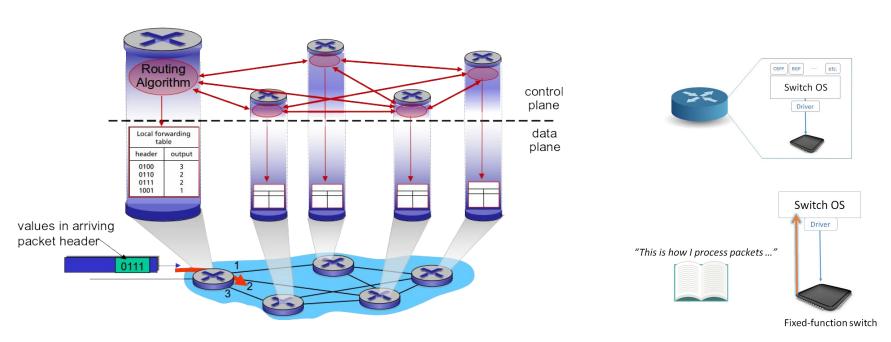
Evolução das Redes : Programabilidade

Época	Tecnologias, aplicações e protocolos	Latência	Largura de Banda
1	FTP, E-mail, Telnet	100 ms	64 Kbps
2	RPC, Computação Cliente/Servidor	10 ms	10 Mbps
3	HTTP, HPC	1 ms	100 Mbps - 1 Gbps
4	Busca na Web, Serviços em Escala Planetária	100 μs	10 Gbps
5	Aprendizado de Máquina, Computação Centrada em dados	10 µs	200+ Gbps - 1 Tbps

Programabilidade de Redes:

 Pilha de protocolo de redes programável

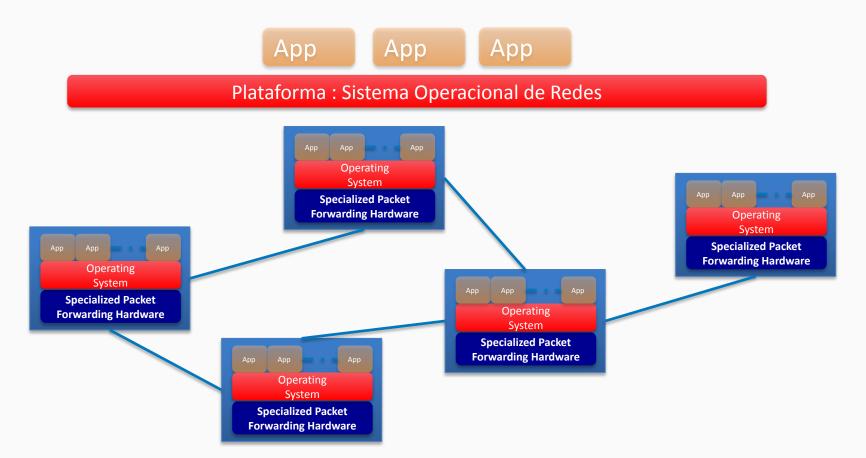
 Caixas foram "abertas" para novos propostas/soluções

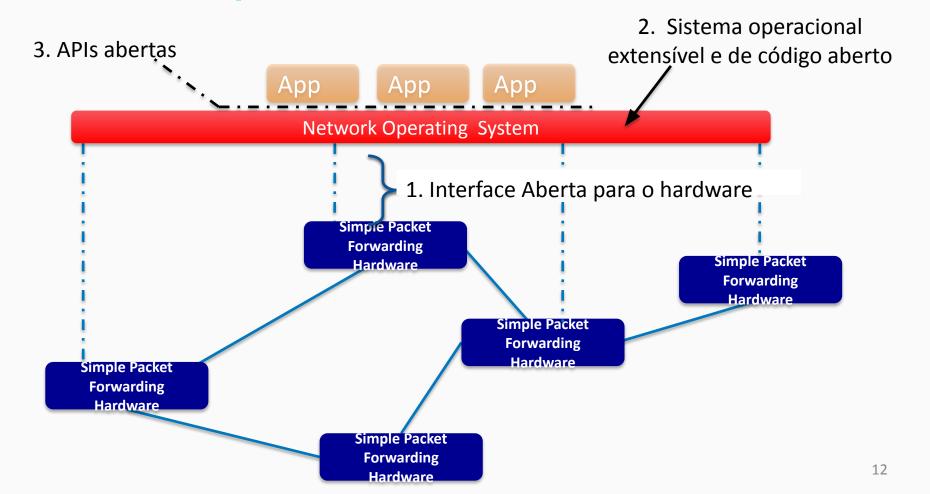

SDN, P4, INT

Agenda

- Evolução da conectividade
 - Gerações, Desempenho, Programabilidade, Interação
 - O que são redes abertas programáveis?
 - Tendências de Softwarização
- A nossa experiência no Lab NERDS :-)
 - Como prototipar soluções com redes programáveis?
 - IA e redes programáveis podem ser combinadas para impulsionar protocolos/padrões em redes abertas ?
 - Implantação de protocolo de roteamento ciente de caminhos

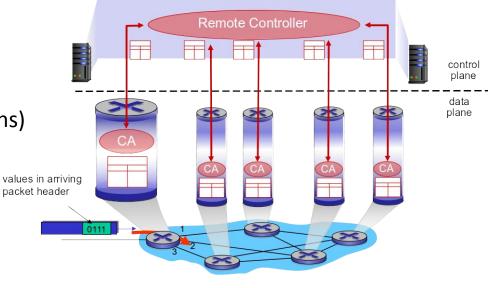
Redes Tradicionais

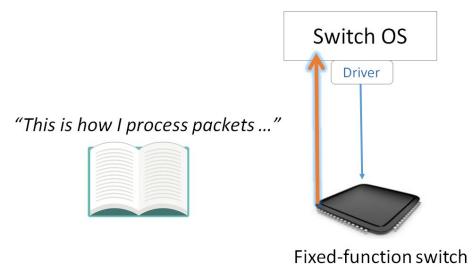

• Equipamento de rede contém tanto o plano de controle quanto o de dados.


Source: Jim Kurose and Keith Ross, "Computer Networking: A Top Down Approach", 7th edition, Pearson/Addison Wesley, 2016.

All material copyright 1996-2016, J.F Kurose and K.W. Ross, All Rights Reserved.

Abrindo as caixas : Redes Definidas por Software


Rede Definida por Software


1º geração SDN: Abertura do plano de dados não programável

- Software-defined networking (SDN): Redes definidas por software
 - Separa planos de controle e dados.
 - Um controlador (logicamente)
 centralizado interage com agentes
 locais nos roteadores.
 - Plano de dados fixo (match & actions)

	wildcar	ds
in_port		dl_src
dl	_dst	di vian
dl_pcp	pad	dl_type
nw_tos	nw_prot	pad
	nw_sr	С
	nw_ds	t
to	src	tp_dst

2º geração SDN: Plano de dados programável Linguagem específica para processamento de pacotes P4

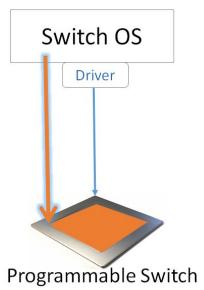
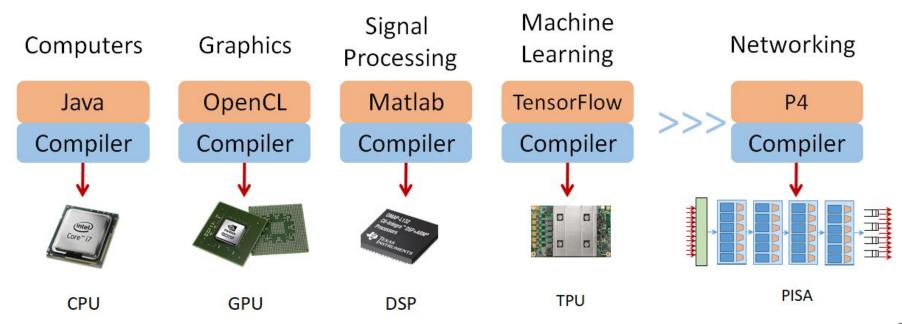
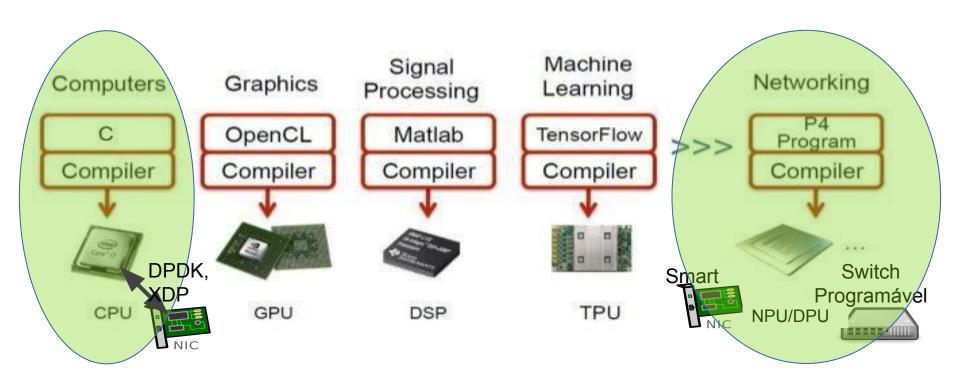
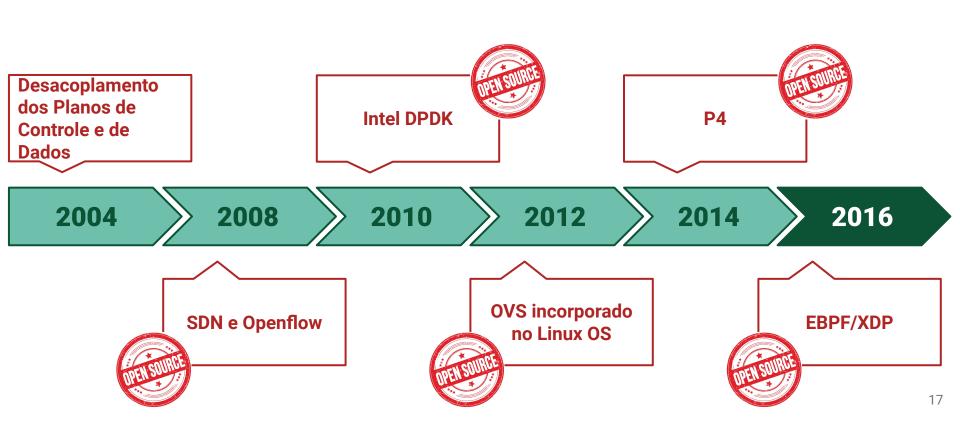

"This is precisely how you must process packets"

table in table (
road (
il.p.oriocol)
actions (
excitors (
excort_mess_latency)
)


actions (
excitors (
excort_mess_latency)
)

actions (
excort_mess_latency)


add_to_fisiding_besize_t.ep, rcc_orion_gint_bs0;
modify_fisiding_besize_t.ep, rcc_orion_gint_bs0;
modify_fisiding_bs2;
modify_fis


Modelos de programação para processamento especializado por domínio

Aceleração usando CPU ou Smart NICS/Switches programáveis

Breve histórico sobre as tecnologias para programabilidade das redes abertas

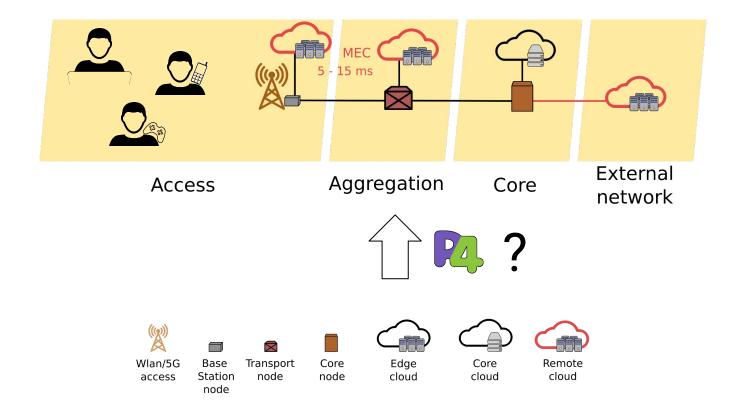
Alguns projetos de redes abertas e suas APIs

O-RAN Alliance foi formada por operadoras globais de telecomunicações como AT&T, Deutsche Telekom, e China Mobile.

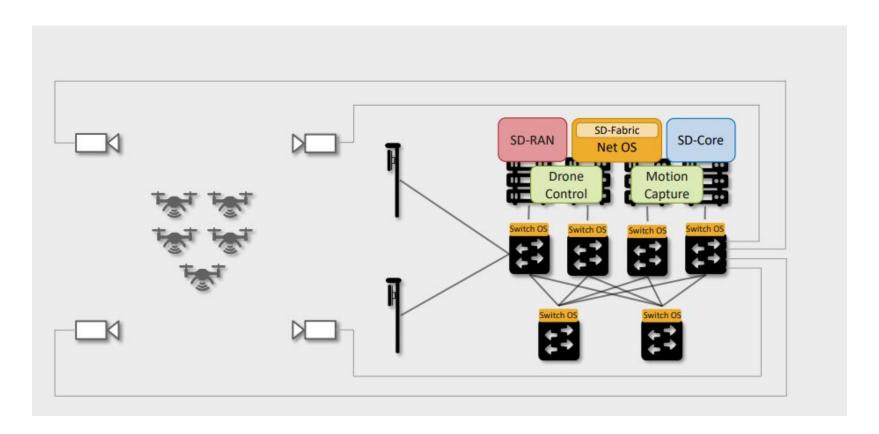
SD-Core projet

Open Networking Foundation

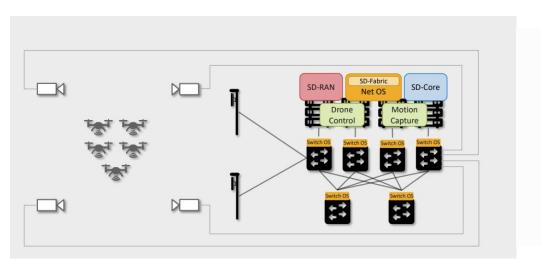
SD-Core™ is a cloud native 4G/5G disaggregated mobile core, supports 5G standalone, 5G non-standalone, and 4G/LTE deployments. Magma projet

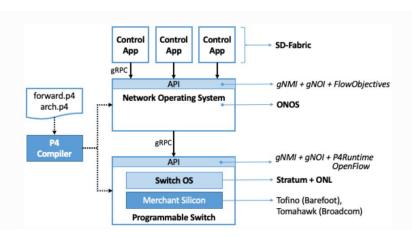

Linux Foundation

2018 > 2019 > 2020 > 2021 > 2022 > 2023

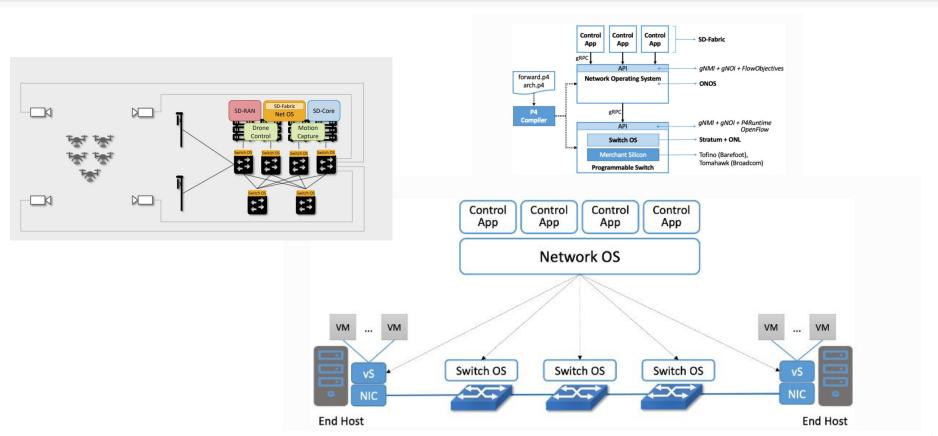

OPERATIONAL DEPLOYMENT
5G Open Source Private 5G
Platform

Aether project
Deutsche Telekom

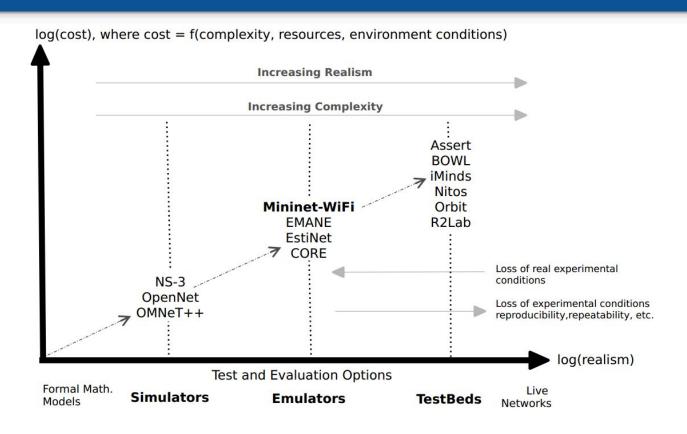

Desafios de Pesquisa: onde inserir código, o que modificar/acelerar ...

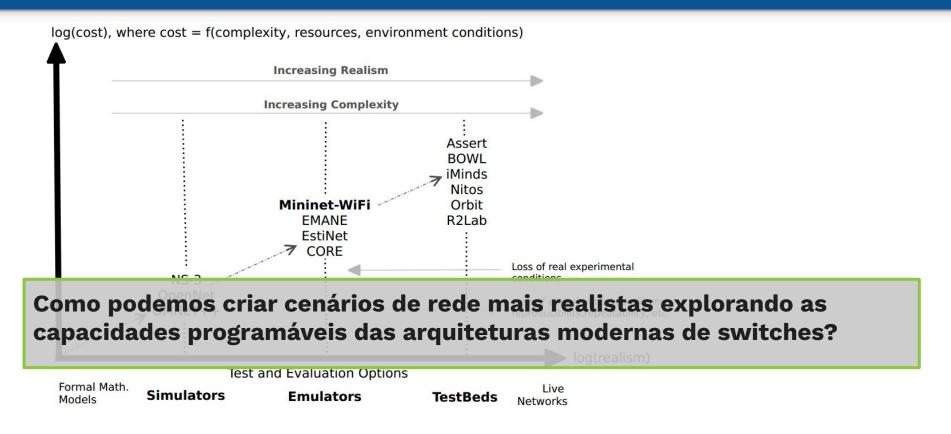


Caso de uso ilustrativo : projeto Aether

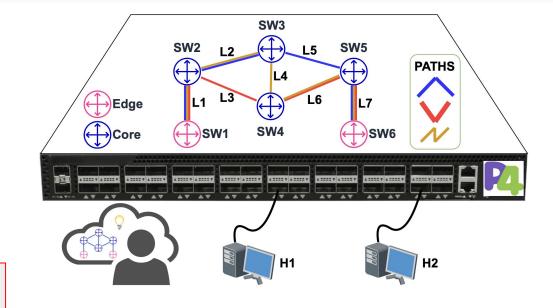


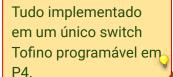
Visão da Pilha de Softwares : com exemplos de softwares (APIs) abertos


Network OS tem a perspectiva da rede e Switch OS com foco no switch

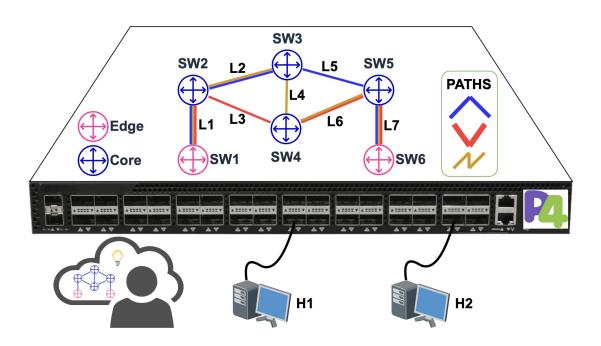

Agenda

- Evolução da conectividade
 - Gerações, Desempenho, Programabilidade, Interação
 - O que s\u00e3o redes abertas program\u00e1veis?
 - Tendências de Softwarização
- A nossa experiência no Lab NERDS :-)
 - Como prototipar soluções com redes programáveis?
 - IA e redes programáveis podem ser combinadas para impulsionar protocolos/padrões em redes abertas ?
 - Implantação de protocolo de roteamento ciente de caminhos


Ambientes experimentais para prototipação, prova de princípio e validação


Ambientes experimentais para prototipação, prova de princípio e validação

PINT-Box: Path Aware Networking IN a Tofino Box


PINT-Box é uma ferramenta de emulação de redes, oferecendo alta fidelidade com taxas de 100Gbps, incluindo várias características de link, como latência, jitter e perda de pacotes, além da opção de personalizar topologias de rede.

Especificação das características dos caminhos

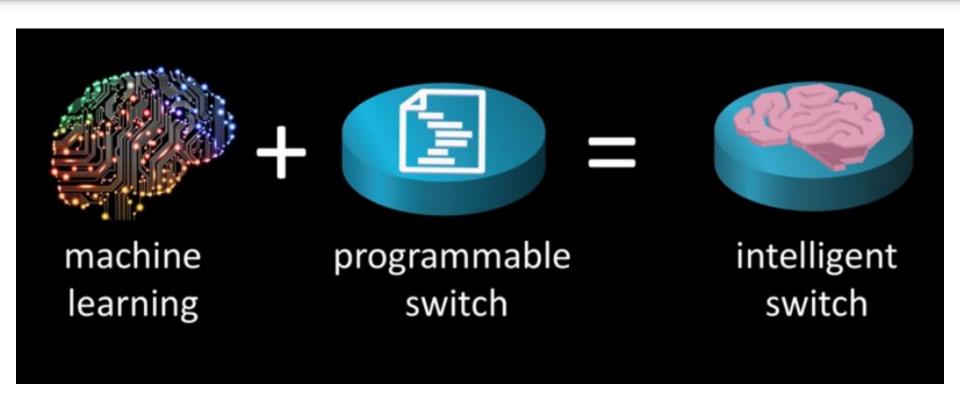
Path1: L1, L2, L5, L7 L5: Loss 3%, Delay: 5ms

Path2: L1, L3, L6, L7 L3: Loss 1%, Delay 15ms

Path3: L1, L2, L4, L6, L7 L4: Loss 2%, Delay 10 ms

Tabela com a configuração dos enlaces

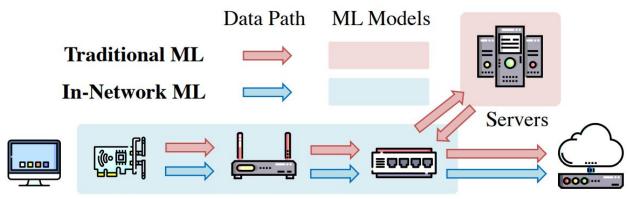
Link da Demo


```
# include the link configuration
topo.addhost("h1", "6/0", 168, 100000000000, "True", "False", 1920, "10.0.0.10")
topo.addhost("h2","5/0", 160, 100000000000, "True", "False", 1920, "10.0.0.20")
# addlink(node1, node2, bw, pkt_loss, latency, jitter, percentage)
# bw is considered just for the first defined link
topo.addlink("h1","sw1", 100000000000, 0, 0, 0, 100)
                                                        #0
topo.addlink("sw1", "sw2", 100000000000, 0, 0, 0, 100)
                                                        #1
topo.addlink("sw2","sw3", 100000000000, 0, 0, 0, 100)
topo.addlink("sw2", "sw4", 100000000000, 1, 15, 0, 100)
                                                        #3
topo.addlink("sw3", "sw4", 100000000000, 2, 1 0, 100)
                                                        #4
topo.addlink("sw3", "sw5", 100000000000, 3, 0, 0, 100)
                                                        #5
topo.addlink("sw4","sw5", 100000000000, 0, 0, 0, 100)
                                                        #6
topo.addlink("sw5","sw6", 100000000000, 0, 0, 0, 100)
                                                        #7
topo.addlink("sw6","h2", 100000000000, 0, 0, 0, 100)
                                                        #8
```

	> e a	S docs.googl	Q 🐧 💞 🛕	£ ± €
in IFE	S English	DOC In Hints	GNA-G RNP	Ireland
	11 12 12 18 1			
C	1 5 2 6	\$ 100%	* \$ % .0	.00 123
C7	▼ fx 3	1%		
	A	В	С	D
1	Link	Bandwith	Loss	Latency
2	LO	10gbps	0%	0ms
3	L1	10gbps	0%	0ms
4	L2	10gbps	0%	0ms
5	L3	10gbps	1%	15ms
6	L4	10mbps	2%	10ms
7	L5	10gbps	3%	5ms
8	L6	10gbps	0%	0ms
9	L7	10gbps	0%	0ms
10	L8	10gbps	0%	0ms

Agenda

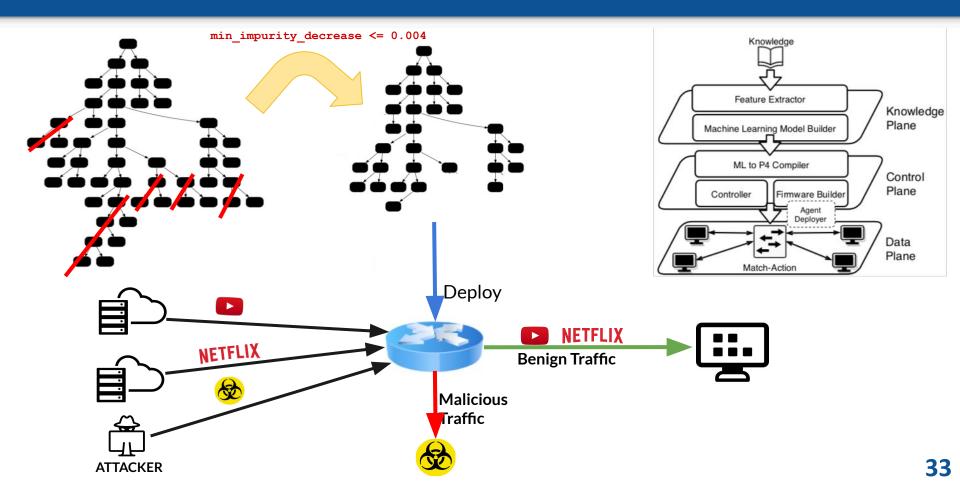
- Evolução da conectividade
 - Gerações, Desempenho, Programabilidade, Interação
 - O que s\u00e3o redes abertas program\u00e1veis?
 - Tendências de Softwarização
- A nossa experiência no Lab NERDS :-)
 - Como prototipar soluções com redes programáveis?
 - IA e redes programáveis podem ser combinadas para impulsionar protocolos/padrões em redes abertas ?
 - Implantação de protocolo de roteamento ciente de caminhos


IA + Redes Programáveis

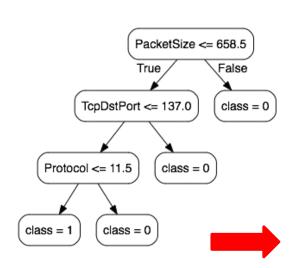
Como usar IA em redes abertas?

In-network Machine Learning:

 Offloading parcial ou total (implantação) de algoritmos de ML executados em dispositivos de rede


Programmable Network Devices

Limitações de programação do plano de dados

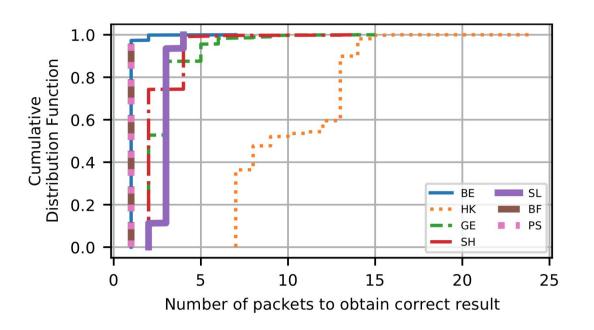

- Sem suporte:
 - Loops: devem ser decompostos em um pequeno conjunto de passos tratáveis
 - Operações matemáticas não elementares e ponto flutuante
 - Alocação dinâmica de memória
- Necessário adaptar algoritmos de IA (vários trabalhos existentes)

- Yifan Yuan, Omar Alama, Jiawei Fei, et al. Unlocking the Power of Inline Floating-Point Operations on Programmable Switches. NSDI 2022.
- Penglai Cui, Heng Pan, Zhenyu Li, et al. Enabling In-Network Floating-Point Arithmetic for Efficient Computation Offloading. IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 12, pp. 4918-4934, 2022.
- 3. Matthews Jose, Kahina Lazri, Jérôme François and Olivier Festor. InREC: In-network REal Number Computation. IM 2021.
- 4. Damu Ding, Marco Savi and Domenico Siracusa. Estimating Logarithmic and Exponential Functions to Track Network Traffic Entropy in P4. NOMS 2020.

In-network ML: Árvores de decisão em SmartNICs

<u>In-network ML: Árvores de decisão em SmartNICs</u>


```
if (hdr.ipv4.totallen <= 658.5)
  if (hdr.tcp.dstport <= 137.0)
    if (hdr.ipv4.protocol <= 11.5)
       meta.class = 1;
    else
       meta.class = 0;
  else
    meta.class = 0;</pre>
else
  meta.class = 0;
```


```
table classtable {
 key = {
   meta.class: exact;
  actions = {
   forward by class;
  size = 512;
apply {
  extract features();
 hash();
 update features();
  <IF-ELSE CHAIN HERE>
 classtable.apply();
       P4 Template
```

Decision Tree

If-else chain

DTs em SmartNICs: Classificação de tráfego para mitigação de ataques

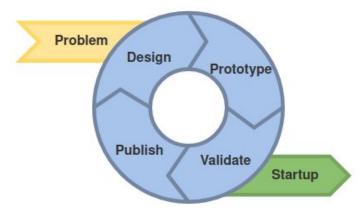
 Mostramos em uma smartNIC que com um pequeno número de pacotes é possível classificar o tráfego com precisão.

Modelos de ML na RAN + Edge SmartNICs

Tese de Doutorado Bruno Missi Xavier

- Título: <u>Crossing Domains for Accuracy: In-Network Stacking of</u>
 <u>Machine Learning Classifiers</u>, Ano de obtenção: 2024.
- Orientador: Magnos Martinello (UFES)
- Coorientador: Marco Ruffini (TCD, Irlanda)

<u>Programmable Switches for in-Networking Classification</u> (IEEE Infocom 2021)


<u>MAP4: A Pragmatic Framework for In-Network Machine Learning Traffic Classification</u> (IEEE TNSM 2022)

Agenda

- Evolução da conectividade
 - Gerações, Desempenho, Programabilidade, Interação
 - O que são redes abertas programáveis?
 - Tendências de Softwarização
- A nossa experiência no Lab NERDS :-)
 - Como prototipar soluções com redes programáveis?
 - Como IA e redes programáveis podem ser combinadas para impulsionar protocolos/padrões em redes abertas ?
 - Implantação de protocolo de roteamento ciente de caminhos

DNA do Grupo de Pesquisa LabNERDS

- Laboratório nasce da demanda por redes programáveis
- Prototipação como prova de princípio
- Participação na criação de infraestrutura de testbeds nacionais internacionais de pesquisa em redes
- Desenvolvimento de software de código aberto
- Amadurecimento para inovação

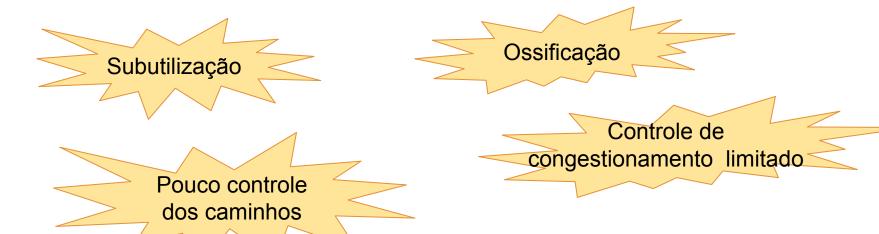
PolKA: motivação

 Um caminho na rede atual é considerado invisível, homogêneo, singular, com dinâmica determinada pela conectividade entre os hosts

 Os hosts têm muito pouca informação sobre os caminhos pelos quais seu tráfego é conduzido e nenhum controle além do endereço de destino.

PolKA: motivação

- Métodos de encaminhamento tradicionais baseados em tabela:
 - Sub-conjunto de caminhos mais curtos → Engenharia de tráfego



○ Grande número de estados → Escalabilidade

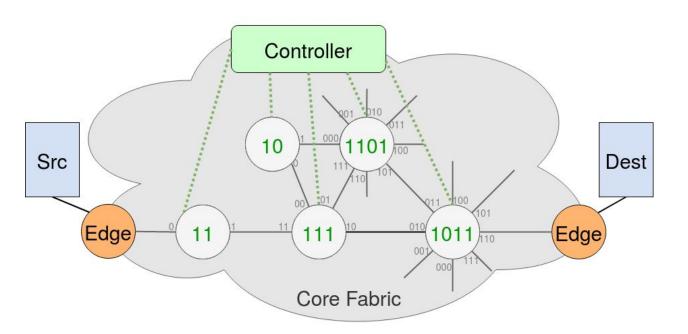
○ Latência para configuração de caminho → Agilidade

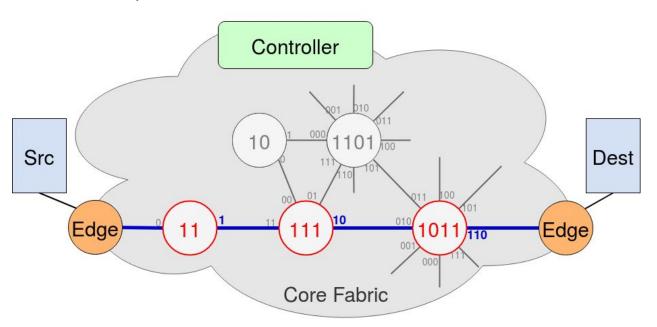
PolKA: motivação

- Alternativa: Roteamento na fonte ou Source Routing (SR)
 - Uma origem determina um caminho e adiciona um rótulo de rota ao cabeçalho do pacote.

Proposta do grupo:

- Codificação da rota usando RNS (Residue Number System)
- Encaminhamento: Substituir tabelas por uma operação aritmética de mod (resto da divisão):


PolKA: Histórico


- RNS inteiro: protótipo de software ou dispositivos NetFPGA especializados
 - M. Martinello et al., "Keyflow: a prototype for evolving SDN toward core network fabrics," in IEEE
 Network, 2014. (RNS SR applied to core networks with SDN)
 - R. R. Gomes et al., "KAR: Key-for-any-route, a resilient routing system," in 2016 IEEE/IFIP DSN.
 (Fast-failure reaction with RNS SR)
 - A. Liberato et al., "RDNA: Residue-Defined Networking Architecture Enabling Ultra-Reliable Low-Latency Datacenters," IEEE TNSM 2018. (RNS SR applied to multicast in DC networks)
- C. K. Dominicini et al., "PolKA: Polynomial Key-based Architecture for Source Routing in Network Fabrics," IEEE NetSoft 2020.
 - RNS polinomial é mais aderente aos switches modernos com P4.
 - O P4 não suporta nativamente a operação de mod.
 - Solução: reuso do hardware CRC (Cyclic Redundancy Check) para mod polinomial.

- Codificação de três identificadores polinomiais usando RNS:
 - routelD
 - nodelD
 - portID
- O encaminhamento usa uma operação de mod (resto da divisão):

 O controlador configura polinômios para switches (nodelDs) e portas (portIDs).

- O controlador escolhe o caminho para um fluxo:
 - Switches: {0011,0111,1011}
 - e portas de saída: {1, 10, 110}

nodeIDs

$$s_1(t) = t + 1 = 11$$

 $s_2(t) = t^2 + t + 1 = 111$
 $s_3(t) = t^3 + t + 1 = 1011$

portIDs

$$o_1(t) = 1$$

 $o_2(t) = t = 10$
 $o_3(t) = t^2 + t = 110$

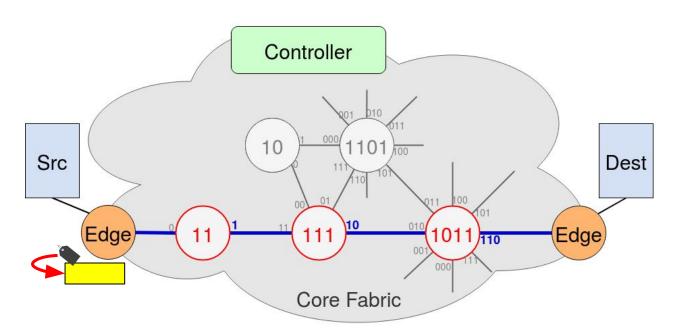
o Controlador calcula o routelD usando RNS:

Encaminhamento:

nodeIDs

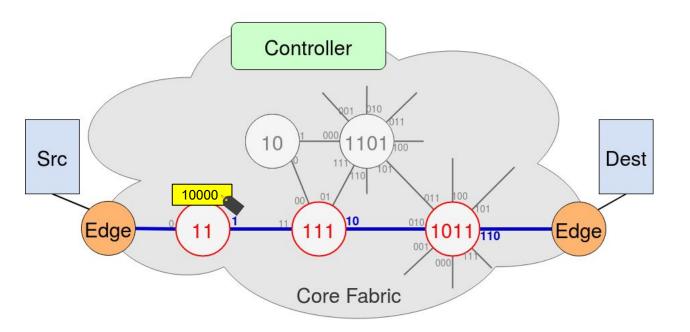
$$s_1(t) = t + 1 = 11$$

 $s_2(t) = t^2 + t + 1 = 111$
 $s_3(t) = t^3 + t + 1 = 1011$

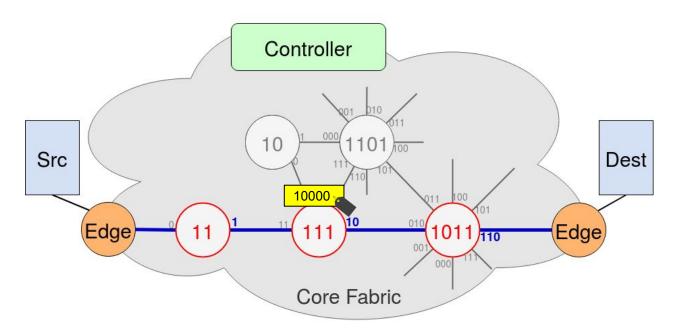

portIDs

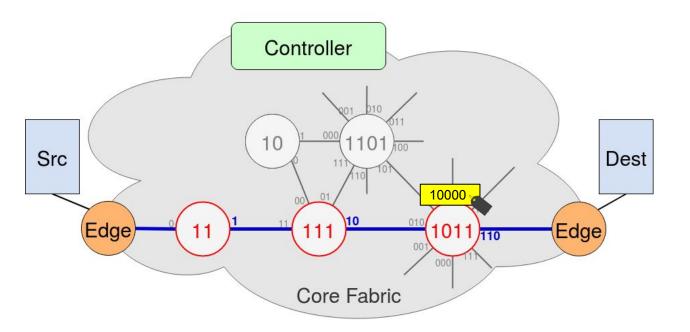
$$o_1(t) = 1$$

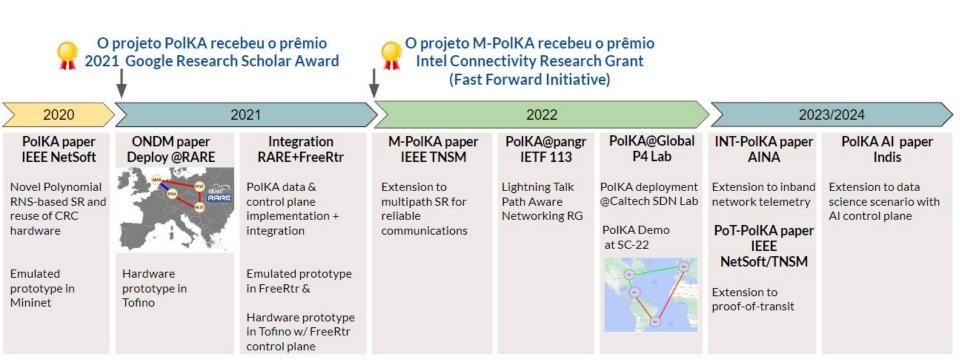
 $o_2(t) = t = 10$
 $o_3(t) = t^2 + t = 110$


Cálculo routeID com RNS

```
t^{4} \equiv 1 \mod (t+1)
t^{4} \equiv t \mod (t^{2}+t+1)
t^{4} \equiv (t^{2}+t) \mod (t^{3}+t+1)
t^{4} \equiv 10000
```


Quando os pacotes chegam, o nó de entrada adiciona o routeID nos pacotes.


- Encaminhamento usando mod: <10000>₀₀₁₁ = 1 → porta de saída
- O routeID não muda! Sem tabelas!


- Encaminhamento usando mod: <10000>₀₁₁₁ = 10 → porta de saída
- O routeID não muda! Sem tabelas!

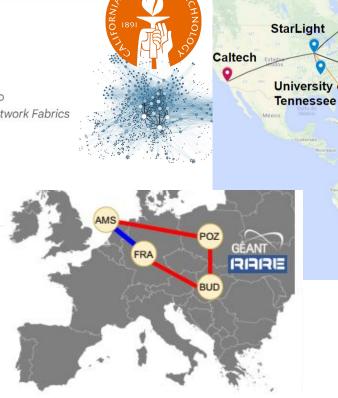
- Encaminhamento usando mod: <10000>₁₀₁₁ = 110 → porta de saída
- O routeID não muda! Sem tabelas!

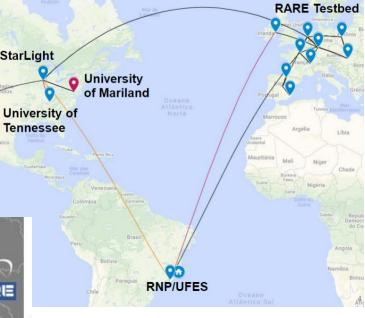
Timeline

PolKA: Highlights

Networking

Aurojit Panda, New York University
Bertha: Network APIs for the Programmable Network Era


Cristina Klippel Dominicini, Instituto Federal do Espirito Santo Polynomial Key-based Architecture for Source Routing in Network Fabrics


Noa Zilberman, University of Oxford Exposing Vulnerabilities in Programmable Network Devices

Rachit Agarwal, Cornell University

Designing Datacenter Transport for Terabit Ethernet

Best Demo Award @IEEE NFV SDN

PInT-BoX: Path aware networking In a Tofino Box PoT-PolKA IEEE TNSM

SC24 Path-aware by PolKA with Al guidance - Outstanding full paper award @ INDIS 2024

Proof-of-Transit paper IEEE NetSoft PolKA Demo at SC-23

Resilient routing with security compliance; Inband Network Telemetry Optimal load balancing

M-PolKA received the Intel Connectivity Research Grant (Fast Forward Initiative)

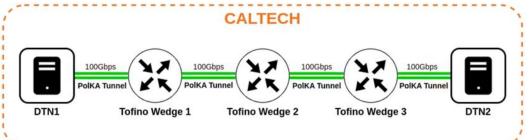
M-PolKA paper IEEE TNSM Multipath SR capabilities for reliable communications; PolKA@pangr IETF 113 Lightning Talk Path Aware Networking PolKA@Global P4 Lab; Deployment @Caltech SDN Lab, Talk at LHC-ONE: PolKA Demo at SC-22 M-PolKA talk at ONF

PolKA received the 2021 Google Research Scholar Award

Deployment @RARE - Hardware prototyped in Tofino Integration with RARE+FreeRtr PolKA in Tofino with FreeRtr OS

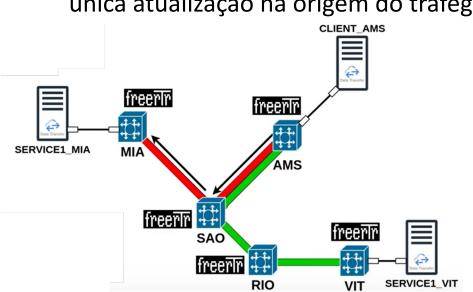
PolKA paper IEEE NetSoft

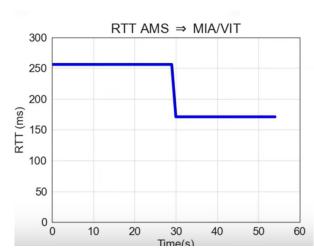
Routing proposal based on RNS and reuse of CRC hardware Emulated prototype in Mininet


PolKA integrado no freerTr OS + UFES parte do Global P4 Testbed

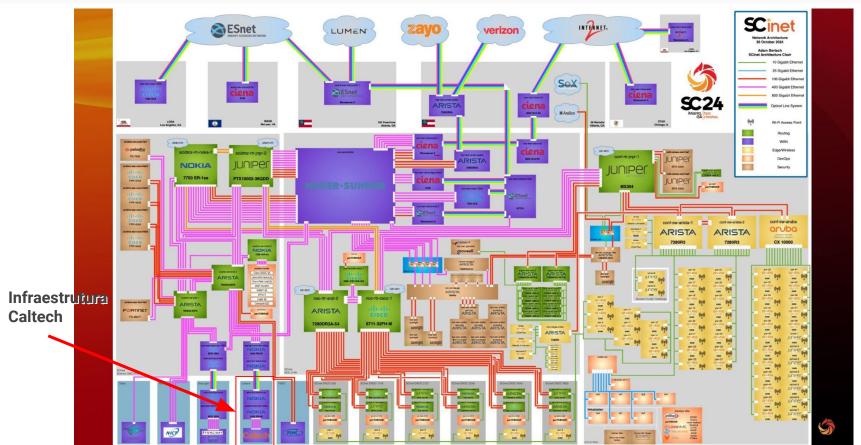
Data Science Group - PolKA Demo

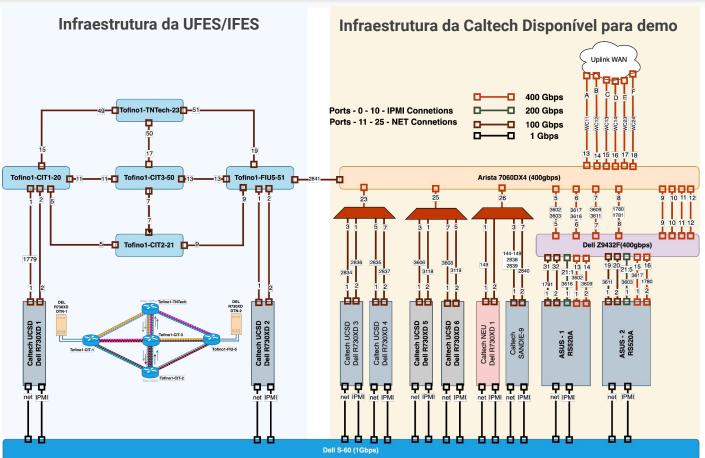
- Grandes streams de dados com vazão de 100 Gbps
 - Caltech P4 lab testbed
 - Vários fluxos TCP agregados direcionados para túneis pré-configurados




Data Science Group - PolKA Demo

- Migração ágil de caminhos em Testbed Intercontinental
 - Global P4 lab testbed
 - Configuração de túnel para engenharia de tráfego
 - Define um caminho explícito (routeID)
 - A migração para outro túnel requer uma única atualização na origem do tráfego


Supercomputing 2024


Supercomputing 2024

Supercomputing 2024

Inovações demonstradas

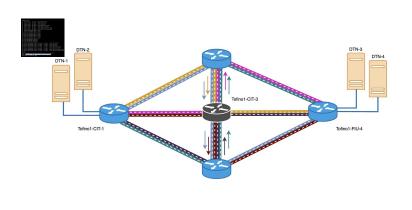
Plano de dados

- Roteamento de fonte (Source Routing)
- Núcleo stateless e sem tabelas
- Encaminhamento de pacotes re-usando CRC no P4

Plano de controle

- Implantação no testbed da Caltech em switches Tofino
- Fácil configuração de túneis
- Integrado na plataforma FreeRtr OS
- Novidades introduzidas para a SC24

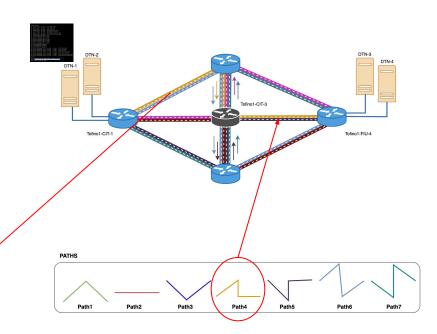
- Path aware networking para Data Intensive Science altamente adaptáveis
- Traffic steering e Agile path reconfiguration
- Engenharia de tráfego com alocação de fluxo otimizada.


Inovações demonstradas

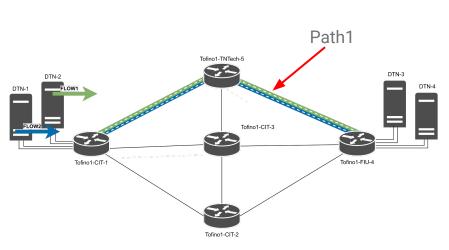
Path-Aware - Dashboard

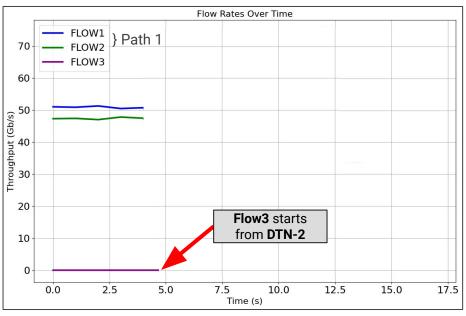
```
Choose a path:
1) Select Path1 - (3 hops) - [CIT1-TNTech-FIU]
2) Select Path2 - (3 hops) - [CIT1-CIT3-FIU]
3) Select Path3 - (3 hops) - [CIT1-CIT2-FIU]
4) Select Path4 - (4 hops) - [CIT1-TNTech-CIT3-FIU]
5) Select Path5 - (4 hops) - [CIT1-CIT2-CIT3-FIU]
6) Select Path6 - (5 hops) - [CIT1-TNTech-CIT3-CIT2-FIU]
7) Select Path7 - (5 hops) - [CIT1-CIT2-CIT3-TNTech-FIU]
8) Check Performance Metrics Path1
9) Check Performance Metrics Path2
10) Check Performance Metrics Path3
11) Check Performance Metrics Path4
12) Check Performance Metrics Path5
13) Check Performance Metrics Path6
14) Check Performance Metrics Path7
15) Link1 Bandwidth Occupation
16) Link2 Bandwidth Occupation
17) Link3 Bandwidth Occupation
18) Select Background Traffic on path1 - (3 hops) - [CIT1-TNTech-FIU]
19) Select Background Traffic on path2 - (3 hops) - [CIT1-CIT3-FIU]
20) Select Background Traffic on path3 - (3 hops) - [CIT1-CIT2-FIU]
21) Select Background Traffic on path4 - (4 hops) - [CIT1-TNTech-CIT3-FIU]
22) Select Background Traffic on path5 - (4 hops) - [CIT1-CIT2-CIT3-FIU]
23) Select Background Traffic on path6 - (5 hops) - [CIT1-TNTech-CIT3-CIT2-FIU]
24) Select Background Traffic on path7 - (5 hops) - [CIT1-CIT2-CIT3-TNTech-FIU]
a) Ouit
Enter the number of the desired path (or type 'q' to quit): 15
Path1 Occupation: 100.00% of max capacity over 1 second
Press Enter to continue...
```

Path-Aware - Estrutura

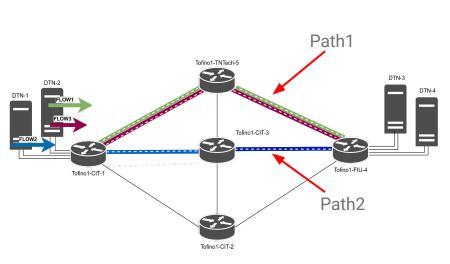

Inovações demonstradas

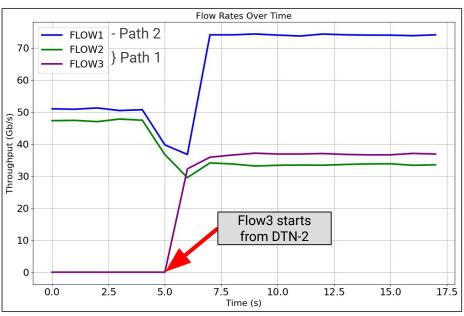
Path-Aware - Dashboard


```
Choose a path:
1) Select Path1 - (3 hops) - [CIT1-TNTech-FIU]
2) Select Path2 - (3 hops) - [CIT1-CIT3-FIU]
3) Select Path3 - (3 hops) - [CIT1-CIT2-FIU]
4) Select Path4 - (4 hops) - [CIT1-TNTech-CIT3-FIU]
5) Select Path5 - (4 hops) - [CIT1-CIT2-CIT3-FIU]
6) Select Path6 - (5 hops) - [CIT1-TNTech-CIT3-CIT2-FIU]
7) Select Path7 - (5 hops) - [CIT1-CIT2-CIT3-TNTech-FIU]
8) Check Performance Metrics Path1
9) Check Performance Metrics Path2
10) Check Performance Metrics Path3
11) Check Performance Metrics Path4
12) Check Performance Metrics Path5
13) Check Performance Metrics Path6
14) Check Performance Metrics Path7
15) Link1 Bandwidth Occupation
16) Link2 Bandwidth Occupation
17) Link3 Bandwidth Occupation
18) Select Background Traffic on path1 - (3 hops) - [CIT1-TNTech-FIU]
19) Select Background Traffic on path2 - (3 hops) - [CIT1-CIT3-FIU]
20) Select Background Traffic on path3 - (3 hops) - [CIT1-CIT2-FIU]
21) Select Background Traffic on path4 - (4 hops) - [CIT1-TNTech-CIT3-FIU]
22) Select Background Traffic on path5 - (4 hops) - [CIT1-CIT2-CIT3-FIU]
23) Select Background Traffic on path6 - (5 hops) - [CIT1-TNTech-CIT3-CIT2-FIU]
24) Select Background Traffic on path7 - (5 hops) - [CIT1-CIT2-CIT3-TNTech-FIU]
a) Ouit
Enter the number of the desired path (or type 'q' to quit): 15
Path1 Occupation: 100.00% of max capacity over 1 second
Press Enter to continue...
```

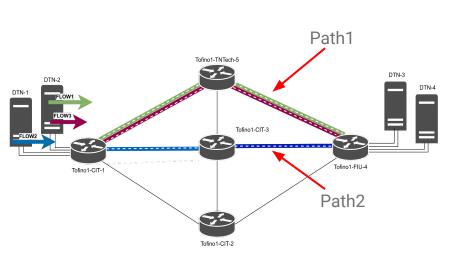

Path-Aware - Estrutura

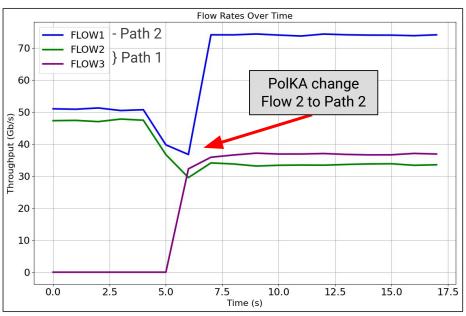
Experimento: Medindo a ocupação do link

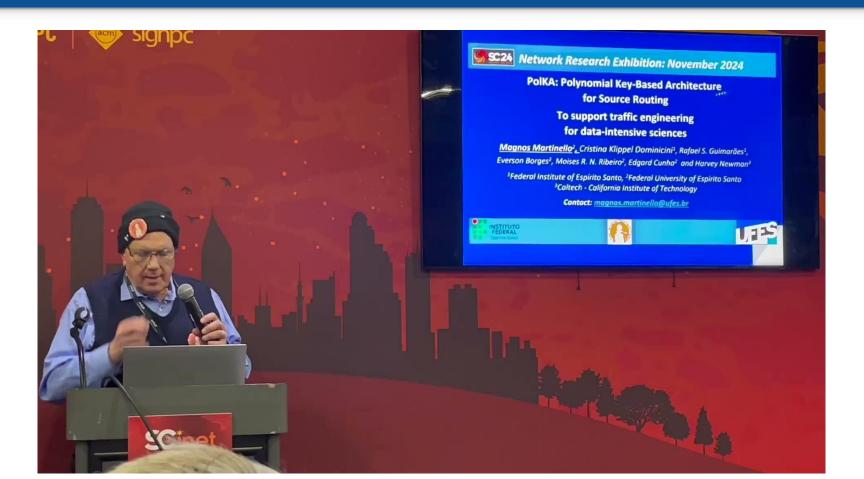


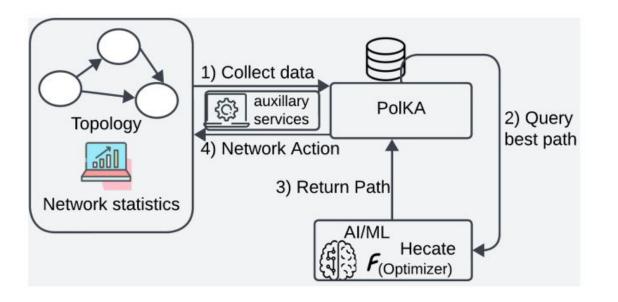


Experimento: Medindo a ocupação do link 🦃 🖫

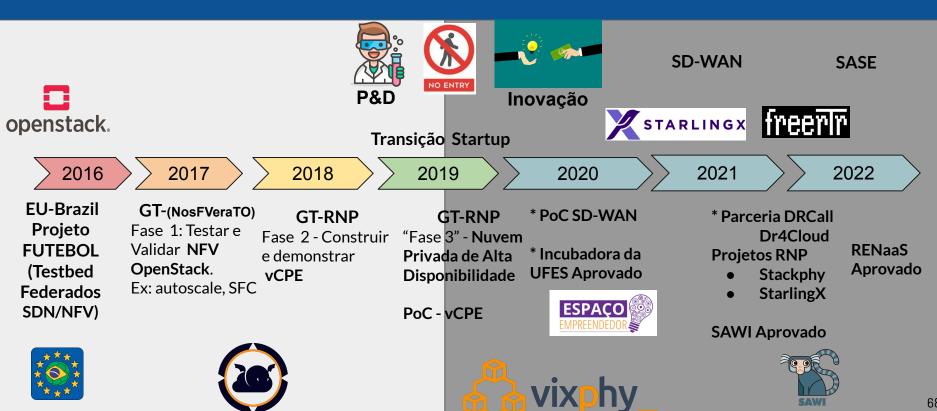





Experimento: Medindo a ocupação do link 🦃 🥰



Professor Harvey Newman apresentando o Protocolo na plenária



PolKA: Plano de Controle guiado por IA

 Integração de métodos de aprendizado de máquina para previsão de caminhos otimizados para os fluxos.

Ciclo de inovação: spin-off do LabNERDS

Inovação em Redes Avançadas: Redes Sobrepostas, Confiáveis e Seguras

Savvy Access through Worldwide Internet - SAWI

Startup Proponente:

Chamada de Propostas FAPESP / MCTIC – 2019 (PIPE)

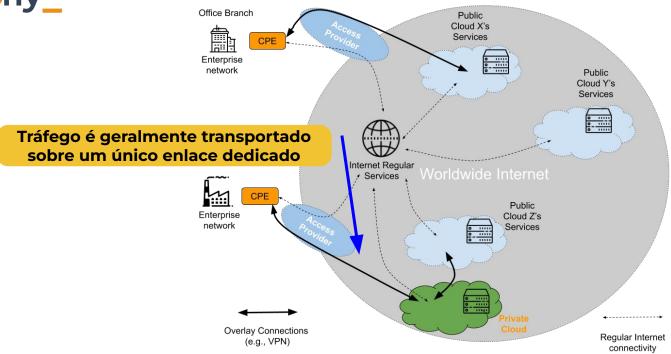
Pesquisa Estratégica sobre a Internet Pesquisa Inovativa em Pequenas Empresas (PIPE) – FASE 2

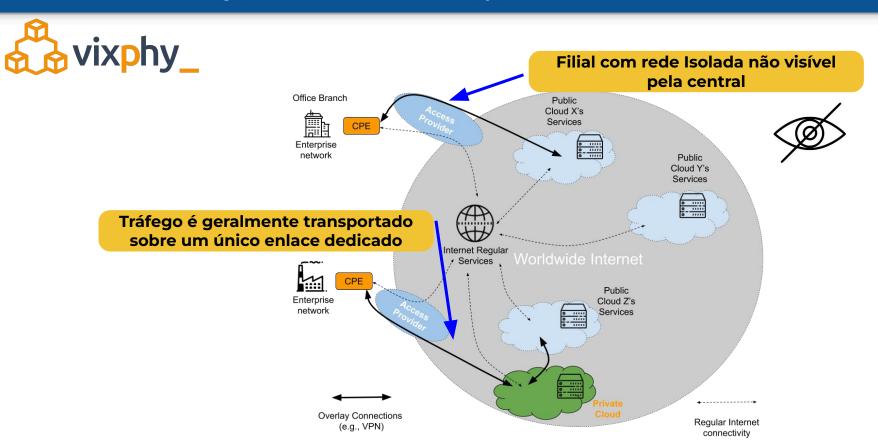
Virtualização de serviços de rede em plataformas de nuvem código aberto.

Parceria Acadêmica:

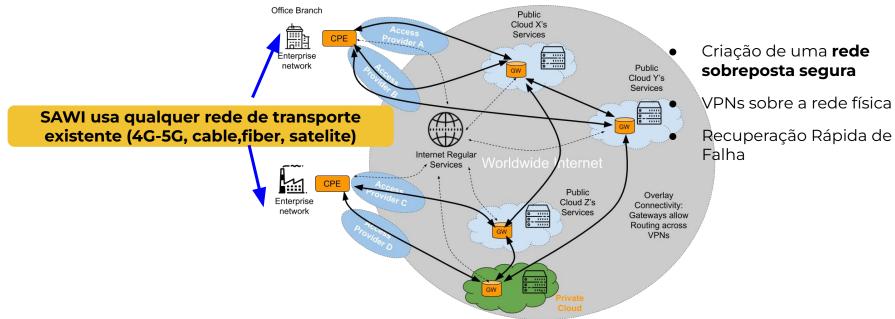
Universidade Federal do Espírito Santo (UFES)

Instituto Federal do Espírito Santo (IFES) Núcleo de Estudos em Redes Definidas por Software (NERDS)

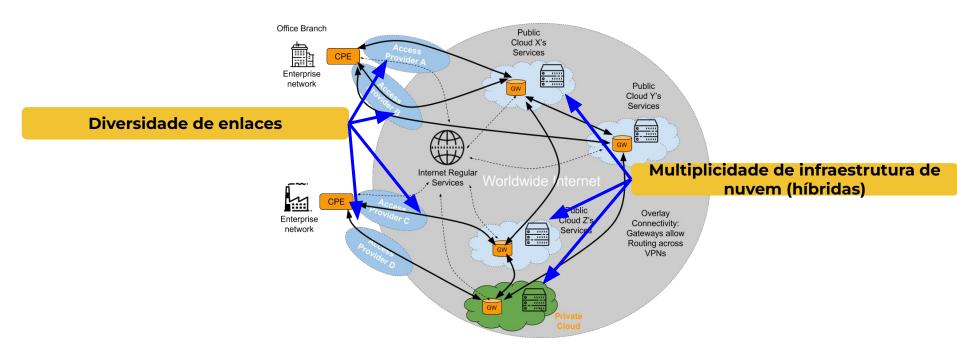




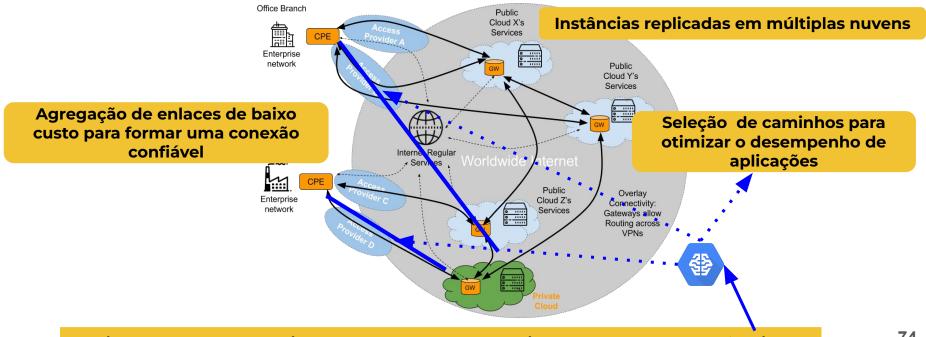
Inovação SD-WAN: spin off do LabNERDS


Inovação SD-WAN : spin off do LabNERDS

Inovação SD-WAN: spin off do LabNERDS



Multiplicidade e Diversidade



Orquestração e Predição guiadas por IA

Lições aprendidas

- Vixphy foi encerrada em 2023
- Desafios:
 - Manter mão de obra qualificada , transformar tecnologia em negócio

 Legado mostra que é viável implementar o SD-WAN impulsionada por nuvens privadas e IA em plano de dados programáveis de alto desempenho.

- Empresa **TelcoWeb** tem continuado a empreender a solução
- RNP contratou uma solução SD-WAN nacionalmente (Cisco)

Recap : Experiências de P&D&I em Redes Abertas

- Construção de ferramenta para emulação de redes em Switches
 Tofino (Intel) : PINT-BoX
- Demonstração da viabilidade de implementar modelos de ML (classificadores) dentro da Rede (O-RAN e na Borda -> SmartNICs)
- Proposta, prototipação e implantação de um protocolo de roteamento ciente do caminho : PolKA
 - Ideia, publicação, validação em emulação, implantação em testbeds e demonstrações (SuperComputing 2022, 2023 e 2024)
- Experiência de criar uma startup (Vixphy) para conexão confiável e segura SD-WAN

Conclusões

- Precisamos de um ecossistema combinando laboratório, ambientes experimentais, prototipação, construção de artefatos, testes e demos
 - Ponto central é formar material humano nesse ecossistema

• É preciso mais parcerias com a indústria com projetos de longo prazo para desenvolver tecnologia nacional (programa openRAN Brasil)

- Fundamental entender a realidade da operação de redes
 - Experiências valiosas provenientes da construção de redes de produção e experimentais (testbeds)
 - Na UFES, Pop-ES RNP, Metrovix, PTT-ES, P4Lab, Porvir-5G

Perspectivas futuras e Oportunidades

- Muitas oportunidades de pesquisa/desenvolvimento e inovação!
- Potencial para habilitar uma nova gama de aplicações !!!
 - Integração de slice em redes 5G nativamente no roteamento
 - Consórcio formado para a padronização do Ultra-Ethernet (Switches Tomahawk da Broadcomm, Tofino da Intel) HP-WANs
 - Demanda gigantesca por treinamento de LLMs em DC
 - Novos protocolos de roteamento para redes de DC (Nvidia NCCP)
 - Padronização de sinalização de congestionamento L4S
 - Aplicações de roteamento para QKD

Agradecimentos aos Colaboradores

Fotos na Super Computing 2024

Obrigado pela sua atenção!

Contato: magnos.martinello@ufes.br