
Panel: LIGO's use of SciTokens
Panelists

Jim Basney (NCSA, SciTokens), moderator
Duncan Brown (Syracuse, PyCBC, SciTokens)

Zach Miller (UW-Madison, HTCondor, SciTokens)
Derek Weitzel (Nebraska, OSG, SciTokens)

Duncan Meacher (UW-Milwaukee, LIGO)

WoTBAn&Az 2020 - November 30, 2020
This material is based upon work supported by the National Science Foundation under Grant
No. 1738962. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Panel Outline

• Access to LIGO Data with SciTokens (Derek)
• SciTokens & HTCondor (Zach)
• SciTokens & LIGO/Virgo DQSegDB (Duncan Brown)
• SciTokens & GWDataFind/GraceDB (Duncan Meacher)
• Discussion (moderated by Jim)

Access to LIGO Data (Derek)

SciTokens Project

• The SciTokens project aims to:

• Introduce a capabilities-based authorization infrastructure
for distributed scientific computing

• Provide a reference platform, combining CILogon, HTCondor,
CVMFS, and XRootD

• Implement specific use cases to help our science stakeholders
(LIGO and LSST) better achieve their scientific aims

Motivation for Switching

• GSI and GridFTP were always “niche”, but even more so
now

• Reference implementations were abandoned by
developers

• Internet community has moved to tokens, OAuth and
others

What is a “SciToken”

• A SciToken is a JSON Web Token (JWT, RFC7519) with
an defined schema

https://tools.ietf.org/html/rfc7519

Token Flow: Technologies

• HTCondor - Create, renew, and transfer SciToken from
the submit host to the execute host.

• CVMFS - Authorize user on the execute machine and
cache data locally.

• XRootD - Manage regional caches and origin(s),
authorize access by token.

Token Flow

• Token is created on the Submit host, no OAuth required
• Implies: “If you can submit jobs on the submit host, you

have access to LIGO data”

Token Verification

• CVMFS on WN
• Cache server
• Origin Server (on first download)

Recent Developments

• Requires HTCondor OAuth issuer on submit host, OSG
is the test case

• XRootD 5.0+ is released with TLS support and
infrastructure is updated

• SciTokens support is being integrated into XRootD and
will be built by default in the next releases

SciTokens and HTCondor (Zach)

SciTokens and HTCondor

• A SciToken is acquired during job submission.

• HTCondor has its own repository of tokens for users and
the services their jobs require.

• The condor_submit command-line tool contacts the
condor_credd daemon on behalf of the user. The user
does not need to take any specific action.

• The condor_credd works with another daemon called
the credmon to create, sign, and place the token in this
repository.

SciTokens and HTCondor

• The job information in the job queue is updated to reflect
that it has a SciToken associated with it.

• The token is monitored in the HTCondor repository even
while the job is idle so the job will not attempt to run
using an expired token.

• When the job is scheduled for execution, the SciToken is
securely transferred to the execute machine for use by
the job.

SciTokens and HTCondor

• The “job sandbox” is the working directory for the job and
holds all the jobs input and output files during execution.

• A directory called “.condor_creds” is created in the
job sandbox, and inside this directory is the file
“scitokens.use” containing the JWT.

• The environment of the job contains “_CONDOR_CREDS”
which points to the full path of the credential directory.

• The job can now easily locate and use the SciToken.

SciTokens and HTCondor

• Support for SciTokens was added during the 8.9.X
development series and will be fully supported in 9.0.0.

• Recently in version 8.9.10 we added support for
“LOCAL” jobs, which are jobs that are submitted and run
locally on the submit/scheduler machine.

• This allows jobs in a DAG to locally acquire data files as
part of a larger workflow, for example.

• It also allows a user to use a simple HTCondor job to
acquire a SciToken on the submit machine, if desired.

SciTokens & SegDB (Duncan Brown)

LIGO/Virgo DQSegDB

DQSegDB is a time-interval database for storing
gravitational-wave observatory metadata.

When is the data good?
When is the data bad?

“Segments” (GPS time intervals) are generated and
retrieved by automated processes and by humans

Ryan P. Fisher, Gary Hemming, Marie-Anne Bizouard, DAB, Peter F. Couvares, Florent Robinet, Didier Verkindt (arXiv:2008.11316)

LIGO/Virgo DQSegDB

API is RESTful web interface,
X509 certificate authentication

Authorized users are allowed to
query segments (LIGO/Virgo
collaboration members)

Second, smaller, group is
allowed to insert and update
segments

https://hostname/dq/ifo/flag/version

Custom WSGI Python script

mod_wsgi ODBC

X509 certificate MariaDB

Apache Storage

https://hostname/dq/ifo/flag/version

LIGO/Virgo DQSegDB

Set up SciTokens server to allow users (or HTCondor
managed processes) to obtain tokens

{

 "aud": "segments.ligo.org",

 "nbf": 1606583049,

 "scope": "read:/DQSegDB",

 "iss": "https://test.cilogon.org",

 "exp": 1606583954,

 "iat": 1606583054,

 "jti": "https://test.cilogon.org/oauth2/accessToken/31dbe174a55c2a600046e45d4d99d0f5/1606583054943"

}

SciTokens Server and DQSegDB server need to agree on
audience and issuer:

 ########################

 # SciTokens constants #

 ######################

 scitokens_issuer = 'https://test.cilogon.org'

 scitokens_audience = 'segments.ligo.org'

 scitokens_cache_dir = '/var/cache/httpd'

LIGO/Virgo DQSegDB

Use SciTokens Python Library to replace check on X509
subject in WSGI DQSegDB server code

Pass HTTP auth headers to WSGI script in Apache config:

WSGIPassAuthorization On

Deserialize and validate token, then check scope.

LIGO/Virgo DQSegDB

auth_type, auth_payload = environ['HTTP_AUTHORIZATION'].split(' ')

token = scitokens.SciToken.deserialize(auth_payload, audience=self.constant.scitokens_audience)

Wrap with try/except to check for invaid audience and expired token

class SciTokensAuthorization():

 def __init__(self):

 self.admin = Admin.AdminHandle()

 self.constant = Constants.ConstantsHandle()

 os.environ['XDG_CACHE_HOME'] = self.constant.scitokens_cache_dir

 self.token_enforcer = scitokens.Enforcer(self.constant.scitokens_issuer, audience=self.constant.scitokens_audience)

 def check(self, token):

 if self.token_enforcer.test(token, "read", "/DQSegDB"): r = [200]

 else: raise UnauthorizedError

GWDataFind & GraceDB
(Duncan Meacher)

GWDataFind

GWDataFind is a package consisting of a server
(gwdatafind-server) and client (gw_data_find) that is used
to find GW data file locations, discovered based on
metadata such as the interferometer, GPS start and end
times, and the data frame types via a simple command-line
tool.

• Currently uses X.509 authentication
• Accessible only to LIGO+Virgo Collaboration members

GraceDB

The Gravitational-Wave Candidate Event Database has served as the
repository for candidate events and associated data products since
2010.

● Currently uses X.509
authentication

● Accessible to everyone for public
data, and LVK + observing
partners for private data

GWDataFind and GraceDB
SciToken Access
SciToken access to GWDataFind currently in development.
Once this is complete, the changes will be applied to
GraceDB. Using a three-stage plan:
1. Generate own SciToken and encode with SSH key, then

decode with local public key and authenticate on the
server. Done

2. Use cluster/Condor generated SciTokens, and
encode/decode with local cluster SSH key/public key.

3. Set up server that contains all cluster public keys for
decoding.

Discussion (moderated by Jim)

What interfaces (command-line, web, etc.) do
LIGO scientists need for obtaining/using tokens?

Can you walk us through the use of tokens on a cluster
head node (from login to job submission to data access)?

What are pros/cons of OAuth-based token issuance versus
local token issuance for LIGO?

Is there a role for OAuth device flow?

StashCache federation support requires TLS encryption
needed to be enabled to use bearer tokens.

Are there other cases where encryption will need to be
enabled?

What is the plan for access by unattended processes
(Robots)?

What is the status of pyCBC compatibility with
SciTokens?

Any use cases for ID Tokens or Group-Based Tokens?

How about use cases for HTCondor's new IDTOKENS
authentication method?

Are there other token use cases we haven't discussed
(e.g., Rucio, LVAlert)?

What are the timelines for LIGO's
migration from X.509 to tokens?

How are international collaborations (Virgo, Kagra)
impacted by the migration to tokens?

Open Discussion

For more info:

https://scitokens.org/

https://groups.google.com/a/scitokens.org/g/ligo-discuss

