Speaker
Description
A velocidade e a dinâmica de propagação de assuntos veiculados no Twitter caracterizam a plataforma como uma fonte de dados ininterrupta. Este artigo propõe uma abordagem distribuída baseada em métricas de redes complexas para a caracterização socio-temporal de dados textuais provenientes do Twitter. A proposta integra o Apache Kafka na ingestão dos dados e o Apache Spark Streaming no processamento em fluxo dos dados para garantir a captura contínua e o processamento eficiente do conteúdo de diferentes fontes. A proposta identifica, correlaciona e monitora o uso de hashtags em tempo real, através de uma estrutura de grafo dinâmica, gerando uma ontologia sobre o tópico de interesse. Diferente de trabalhos anteriores, que empregam dados históricos, a proposta é aplicada a um caso de Uso real com grande repercussão e engajamento dos usuários do Twitter. Avaliando as flutuações de métricas como centralidade, diâmetro e densidade para múltiplas componentes do grafo de hashtags, os resultados revelam tendências de escrita e padrões de relacionamento que reforçam sensação de câmaras de eco e oportunismo midiático a na lógica de utilização de hashtags.